Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 1, pp. 268-282
Satellite monitoring of the flood in the Ural River basin in 2024
S.S. Shinkarenko
1 , S.A. Bartalev
1 , E.A. Loupian
1 1 Space Research Institute RAS, Moscow, Russia
Accepted: 06.02.2025
DOI: 10.21046/2070-7401-2025-22-1-268-282
In spring 2024, the floodwaters of the Ural River were characterized by exceptionally high levels, resulting in partial inundation of several cities, including Orsk and Orenburg in Russia, as well as Uralsk in Kazakhstan. The prerequisites for this significant flooding included substantial snowpack, deep soil frost, increased soil moisture, and a sharp warming trend at the end of March following relatively low air temperatures in February and the first half of March. Moderate-resolution satellite data from MODIS enabled the tracking of the flood wave along the Ural River from its upper reaches to its mouth, as well as on its major tributaries — namely, the Big Kumak, Or’, Sakmara, Ilek, Utva, Kindelya, Irtek, and Chagan rivers. This report presents daily floodplain areas and durations of inundation for the Ural River and its tributaries. The area and travel time estimates for the flood wave derived from MODIS data align closely with observations from hydrological stations regarding water levels. The flooding in the upper and middle reaches of the Ural River developed quite rapidly; notably, the initial overflow onto the floodplain was recorded in the southern left tributaries of the Ural, where snowmelt commenced earlier due to latitudinal characteristics compared to the northern right tributaries. Due to an atypically high volume of precipitation during the summer of 2024, elevated water levels on the Ural River were observed until September; however, floodplain inundation during this period was only recorded in the lower reaches of the river. The methodologies employed for mapping the first and last dates of water surface observation on the floodplain, along with subsequent assessments of flood duration and travel time of the flood wave, may be recommended for use in specialized hydrological monitoring systems utilizing remote sensing data.
Keywords: remote sensing, flood, floodplain, Ural River, inundation, monitoring
Full textReferences:
- Borsch S. V., Simonov Yu. A., Khristoforov A. V., Yumina N. M., Forecasting the characteristics of the flood in 2024 on the Ishim, Tobol and Ural rivers, Gidrometeorologicheskie issledovaniya i prognozy, 2024, No. 2(392), pp. 111–129 (in Russian), DOI: 10.37162/2618-9631-2024-2-111-129.
- Voronova A. E., Rublev I. V., Solov’eva I. A. et al., Satellite observation of extreme flooding in the Irkutsk Region in 2019, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 1, pp. 263–266 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-263-266.
- Dubina V. A., Shamov V. V., Plotnikov V. V., Disastrous flood in August 2018 in Primorye (south Pacific Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 5, pp. 253–256 (in Russian), DOI: 10.21046/2070-7401-2018-15-5-253-256.
- Zilitinkevich N. S., Methods of calculation of daily flooded areas in the Volga delta during the flood periods based on the remote sensing data, Issledovanie Zemli iz kosmosa, 2024, No. 3, pp. 78–93 (in Russian), DOI: 10.31857/S0205961424030065.
- Konstantinova A. M., Loupian E. A., Analysis of the consequences of the dam failure of the Sardoba Reservoir on May 1, 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 3, pp. 261–266 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-261-266.
- Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, V. 12, No. 5, pp. 263–284 (in Russian).
- Sivokhip Z. T., Pavleichik V. M., Current changes in the maximum runoff of the rivers of the Ural River Basin, Proc. Voronezh State University. Ser.: Geography. Geoecology, No. 2, pp. 72–80 (in Russian), DOI: 10.17308/geo/1609-0683/2024/2/72-80.
- Sivokhip Z. T., Padalco Yu. A., Geographical and hydrological factors of dangerous hydrological phenomena of the Ural River Basin, Izvestiya Rossiiskoi akademii nauk. Ser. Geograficheskaya, 2014, No. 6, pp. 53–61 (in Russian), DOI: 10.15356/0373-2444-2014-6-53-61.
- Solodovnikov D. A., Shinkarenko S. S., Khavanskaya N. M., Kukushkina N. A., Developmental experience of the geoinformation system for floodplain lands of the Don Basin, South of Russia: ecology, development, 2022, V. 17, No. 1(62), pp. 151–161 (in Russian), DOI: 10.18470/1992-1098-2022-1-151-161.
- Terekhov A. G., Abaev N. N., Lagutin E. I., Satellite monitoring of the Sardoba Reservoir in Syr Darya River basin (Uzbekistan) before and after a dam collapses on May 1, 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 3, pp. 255–260 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-255-260.
- Terekhov A. G., Sairov S. B., Abaev N. N. et al., Possible causes of abnormal spring flooding in Kazakhstan in 2024, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 3, pp. 331–338 (in Russian), DOI: 10.21046/2070-7401-2024-21-3-331-338.
- Troshko K. A., Denisov P. V., Dunaieva E. A. et al., Development of agricultural crops in Russia in 2024 based on remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 4, pp. 308–315 (in Russian), DOI: 10.21046/2070-7401-2024-21-4-308-315.
- Tursunova A. A., Myrzakhmetov A. B., Baspakova G. R. et al., Historical information on the hydrological characteristics of floods on the Zhaiyk river, Geografiya i vodnye resursy, 2024, No. 2, pp. 40–51 (in Russian), DOI: 10.55764/2957-9856/2024-2-40-51.11
- Chepashev D. V., Akzharkynova A. N., Kalybaeva A. K., Isklieva G. M., Assessment of the water level regime during the flood of the Zhayik river using earth remote sensing data, Vestnik Almatinskogo universiteta energetiki i svyazi, 2024, V. 3, No. 66, pp. 118–128 (in Russian), DOI: 10.51775/2790-0886_2024_66_3_118
- Chibilev A. A., Bassein Urala: istoriya, geografiya, ekologiya (The Ural Basin: history, geography, ecology), Ekaterinburg: UrO RAN, 2008, 312 p. (in Russian).
- Shinkarenko S. S., Bartalev S. A., The consequences of damage to the Kakhovka Reservoir dam on the Dnieper River, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 3, pp. 314–322 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-314-322.
- Shinkarenko S. S., Vasil’chenko A. A., Actual state of the lower don spawning grounds according to remote sensing data, Vestnik Moskovskogo universiteta. Ser. 5: Geografiya, 2023, No. 1, pp. 16–27 (in Russian), DOI: 10.55959/MSU0579-9414.5.78.1.2.
- Shinkarenko S. S., Bartalev S. A., Bogodukhov M. A. et al., The Lower Volga floodplain classification based on long-term hydrological and remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 3, pp. 119–135 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-119-135.
- Shinkarenko S. S., Bartalev S. A., Loupian E.A, Monitoring the consequences of flooding in Orenburg Region during spring flood on the Ural River in 2024, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 3, pp. 339–347 (in Russian), DOI: 10.21046/2070-7401-2024-21-3-339-347.
- Claverie M., Ju J., Masek J. G. et al., The harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sensing of Environment, 2018, V. 219, pp. 145–161, DOI: 10.1016/j.rse.2018.09.002.
- Jones J. W., Improved automated detection of subpixel-scale inundation—Revised Dynamic Surface Water Extent (DSWE) partial surface water tests, Remote Sensing, 2019, V. 11, No. 4, Article 374, DOI: 10.3390/rs11040374.
- Loupian E., Burtsev M., Proshin A. et al., Usage experience and capabilities of the VEGA-Science system, Remote Sensing, 2022, V. 14, No. 1, Article 77, DOI: 10.3390/rs14010077.
- Pekel J.-F., Cottam A., Gorelick N., Belward A. S., High-resolution mapping of global surface water and its long-term changes, Nature, 2016, V. 540, pp. 418–422, DOI: 10.1038/nature20584.
- Slayback D., Devadiga S., Kettner A. et al., NASA’s updated near real-time global flood product, 2023 IEEE Intern. Geoscience and Remote Sensing Symp., 2023, pp. 1432–1435, DOI: 10.1109/IGARSS52108.2023.10282015.
- Solodovnikov D. A., Shinkarenko S. S., Present-day hydrological and hydrogeological regularities in the formation of river floodplains in the Middle Don Basin, Water Resources, 2020, V. 47, No. 6, pp. 719–728, DOI: 10.1134/S0097807820060135.