ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 1, pp. 43-55

Development of slope processes in the vicinity of the Sarez Lake dam in 2023 as viewed by spaceborne SAR interferometry

L.N. Zakharova 1 , A.I. Zakharov 1 , A.L. Strom 2 
1 Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
2 Institute Hydroproject JSC, Moscow, Russia
Accepted: 21.11.2024
DOI: 10.21046/2070-7401-2025-22-1-43-55
The paper focuses on the assessment of slope dynamics on the banks of the Sarez Lake near the Usoi dam in Tajikistan. Sentinel-1 synthetic aperture radar (SAR) data of European Space Agency have been processed for the time period since February 2023 till February 2024. Surface displacements were detected on both left and right banks of the lake. In order to extract the components of the full displacement vector, we used data from ascending and descending orbits of Sentinel-1. The influence of the troposphere on the interferometric phase was taken into account. Two approaches to full displacement vector estimation were used: the first one assumes zero North-South component of the displacement, the second one assumes the motion vector oriented generally in the slope direction with possible slight deflections in the vertical plane. Different details in the displacement maps created by using the two approaches are described. Maximal displacement velocities are estimated as 243 mm/year and 169 mm/year on the right and left slopes, respectively. The stability of the Usoi dam throughout the entire year-long period was demonstrated. It is concluded that this area needs to be closely monitored and further measurements are necessary.
Keywords: landslides, Sarez Lake, synthetic aperture radar, SAR, SAR interferometry, InSAR, differential InSAR, DInSAR, displacement assessment
Full text

References:

  1. Volkova M. S., Mikhailov V. O., Osmanov R. S., Analysing the efficiency of the HRES (GACOS) global weather model for correction of atmospheric noise in interferometric estimates of displacement fields on the example of volcanoes in Kamchatka, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 2, pp. 9–22 (in Russian), DOI: 10.21046/2070-7401-2024-21-2-9-22.
  2. Ishchuk N. R., “Landslides” on the banks of the Lake Sarez (Tajikistan), Georisk, 2013, No. 2, pp. 48–60 (in Russian).
  3. Ishchuk N. R., Strom A. L., Geological effects of the earthquake at the Sarez Lake on December 7, 2015, Georisk, 2016, No. 3, pp. 56–74 (in Russian).
  4. Lim V. V., Akdodov Yu., Opolzni Sareza (Landslides of Sarez), Dushanbe: Donish, 1998. 165 p. (in Russian).
  5. Poslavskii V. V., About one catastrophe in the Pamirs (History of Sarez Lake), Gidrotekhnika i melioratsiya, 1968, No. 3, pp. 98–116 (in Russian).
  6. Sheko A. I., Assessment of the stability of the Usoi dam and the possibility of breaching the Sarez Lake, Byulleten’ Moskovskogo obshchestva ispytatelei prirody. Otdel geologicheskii, 1968, V. 43, No. 4, pp. 151–159 (in Russian).
  7. Achache J., Fruneau B., Delacourt C., Applicability of SAR interferometry for monitoring of landslides, ERS Applications, Proc. 2 nd Intern. Workshop, 6–8 Dec., 1995, London, ESA SP-383, 1996, pp. 165–168.
  8. Droz P., Fumagalli A., Novali F., Young B., GPS and InSAR technologies: A joint approach for the safety of Lake Sarez, 4 th Canadian Conf. Geohazards, 20–24 May 2008, Québec: Presse de l’Université Laval, 2008, pp. 147–154.
  9. Ferretti A., Prati C., Rocca F., Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geoscience and Remote Sensing, 2000, V. 38, No. 5, pp. 2202–2212, DOI: 10.1109/36.868878.
  10. Gabriel A. K., Goldstein R. M., Zebker H. A., Mapping small elevation changes over large areas: Differential radar interferometry, J. Geophysical Research: Solid Earth, 1989, V. 94, Iss. B7, pp. 9183–9191, DOI: 10.1029/JB094iB07p09183.
  11. Grebby S., Sowter A., Gee D. et al., Remote monitoring of ground motion hazards in high mountain terrain using InSAR: A case study of the Lake Sarez area, Tajikistan, Applied Sciences, 2021, V. 18, No. 11, Article 8738, DOI: 10.3390/app11188738.
  12. Guneriussen T., Hogda K. A., Johnsen H., Lauknes I., InSAR for estimation of changes in snow water equivalent of dry snow, IEEE Trans. Geoscience and Remote Sensing, 2001, V. 39, No. 10, pp. 2101–2108, DOI: 10.1109/36.957273.
  13. Hogenson K., Kristenson H., Kennedy J. et al., Hybrid Pluggable Processing Pipeline (HyP3): A cloud-native infrastructure for generic processing of SAR data: Computer software, 2020, DOI: 10.5281/zenodo.4646138.
  14. Hu J., Li Z. W., Ding X. L. et al., Resolving three-dimensional surface displacements from InSAR measurements: A review, Earth-Science Reviews, 2014, V. 133, pp. 1–17, DOI: 10.1016/j.earscirev.2014.02.005.
  15. Ischuk A. R., Usoi rockslide dam and Lake Sarez, Pamir Mountains, Tajikista, In: Natural and Artificial Rockslide Dams. Lecture Notes in Earth Sciences, Evans S. G., Hermanns R. L., Strom A., Scarascia-Mugnozza G. (eds.), V. 133, Springer, Berlin, Heidelberg, 2011, pp. 423–440, DOI: 10.1007/978-3-642-04764-0_16.
  16. Nardini O., Confuorto P., Intrieri E. et al., Integration of satellite SAR and optical acquisitions for the characterization of the Lake Sarez landslides in Tajikistan, Landslides, 2024, V. 21, pp. 1385–1401, DOI: 10.1007/s10346-024-02214-y.
  17. Yu C., Penna N. T., Li Z., Generation of real‐time mode high‐resolution water vapor fields from GPS observations, J. Geophysical Research: Atmospheres, 2017, V. 122, Iss. 3, pp. 2008–2025, DOI: 10.1002/2016JD025753.
  18. Yu C., Li Z., Penna N. T. (2018a), Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model, Remote Sensing of Environment, 2018, V. 204, pp. 109–121, DOI: 10.1016/j.rse.2017.10.038.
  19. Yu C., Li Z., Penna N. T., Crippa P. (2018b), Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations, J. Geophysical Research: Solid Earth, 2018, V. 123. Iss. 10, pp. 9202–9222, DOI: 10.1029/2017JB015305.