ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 1, pp. 178-191

Modeling of Doppler spectrum of signal reflected by sea ice cover in bistatic measurement scheme in L- and Ku-bands

Yu.A. Titchenko 1 , D.A. Kovaldov 1 , V.Yu. Karaev 1 , V.P. Lopatin 2 , V.F. Fateev 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Russian Metrological Institute of Technical Physics and Radioengineering, Solnechnogorsk, Moscow Region, Russia
Accepted: 21.11.2024
DOI: 10.21046/2070-7401-2025-22-1-178-191
In connection with the widespread use of remote sensing methods for monitoring the area occupied by ice cover in the World Ocean and the active development of two-position (bistatic) radar techniques using global navigation satellite systems (GNSS) signals, modeling the reflected GNSS signal received on various carriers becomes an urgent task. In this paper, an approach to constructing semi-empirical models of Doppler spectrum of a microwave signal bistatically reflected by ice cover is developed. For comparison, bistatic remote sensing in L- and Ku-bands is considered. It is shown that to determine the type of the underlying surface (ice or sea surface), it is possible to analyze the kurtosis coefficient and the width of the Doppler spectrum of the bistatically reflected signal. In some cases, the width of Doppler spectrum of the reflected signal may coincide for the ice cover and open water with a weak surface wind in L-band. At the same time, the kurtosis coefficient of Doppler spectrum differs significantly, which makes it possible to distinguish ice cover even in case of weak waves.
Keywords: quasi-specular scattering, bistatic radar, Doppler spectrum, sea waves, ice cover, semi-empirical model, GNSS, L-band, Ku-band
Full text

References:

  1. Avdeev V. A., Bakholdin V. S., Gavrilov D. A., Gerasimenko I. S., Dobrikov V. A., Ivanov A. A., Ivanov V. F., Koshkarov A. S., Sakhno I. V., Simonov A. B., Tkachev E. A., Uspenskii K. K., Shaldaev A. V., Shul’zhenko A. V., A set of experiments on receiving signals reflected from the Earth’s surface from satellite radio navigation systems GLONASS/GPS, Trudy Instituta prikladnoi astronomii RAN, 2012, No. 23, pp. 303–306 (in Russian).
  2. Bakit’ko R. V., Bulavskii N. T., Gorev A. P., Dvorkin V. V., Efimenko V. S., Ivanov N. E., Karpeikin A. V., Mishchenko I. N., Nartov V. Ya., Perov A. I., Per’kov A. E., Tyubalin V. V., Urlichich Yu. M., Kharisov V. N., GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Principles of construction and functioning), 3rd ed., Moscow: Radiotekhnika, 2005 (in Russian).
  3. Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti (Wave scattering from statistically rough surfaces), Moscow: Nauka, 1972, 424 p. (in Russian).
  4. Bondur V. G., Dobrozrakov A. D., Kurekin A. S., Kurekin A. A., Pichugin A. P., Yatsevich S. E., Radio scattering by the sea surface during bistatic location, Issledovanie Zemli iz kosmosa, 2009, No. 6, pp. 3–15 (in Russian).
  5. Garnaker’yan A. A., Sosunov A. S., Radiolokatsiya morskoi poverkhnosti (Sea surface radio location), Rostov-on-Don: Izd. Rostovskogo universiteta, 1978, 144 p. (in Russian).
  6. Zubkovich S. G., Statisticheskie kharakteristiki radiosignalov, otrazhennykh ot zemnoi poverkhnosti (Statistical characteristics of radio signals reflected from the Earth’s surface), Moscow: Sovetskoe radio, 1968, 224 p. (in Russian).
  7. Isakovich M. A., Scattering of waves from a statistically rough surface, Zhurnal eksperimental’noi i teoreticheskoi fiziki, 1952, V. 23, No. 3(9), pp. 305–314 (in Russian).
  8. Kalmykov A. I., Kurekin A. S., Ostrovskii I. E., Pustovoitenko V. V., Two-position scattering of radio waves by the sea surface at small grazing angles, Izvestiya vuzov. Radiofizika, 1966, V. 10, No. 6, pp. 1073–1082 (in Russian).
  9. Karaev V. Yu., Titchenko Yu. A., Panfilova M. A. et al., Doppler spectra of a microwave signal measured during movement over ice cover and sea waves: Comparison of models and determination of the kind of scattering surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 3, pp. 247–258 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-247-258.
  10. Kovaldov D. A., Titchenko Yu. A., Karaev V. Yu. et al., On the issue of determining the scattering diagram of ice cover using bistatic remote sensing data in the L-band, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 6, pp. 294–308 (in Russian), DOI: 10.21046/2070-7401-2024-21-6-294-308.
  11. Kovaldov D. A., Titchenko Yu. A., Karaev V. Yu., Panfilova M. A., Peculiarities of quasi-specular reflection of microwave radio waves by sea ice based on bistatic remote sensing data in the L-band, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025 (in Russian) (in print).
  12. Kucheryavenkov A. I., Milekhin O. E., Pavel’ev A. G., Analysis of the possibilities of bistatic radar of the Earth using satellites, Issledovanie Zemli iz kosmosa, 1986, No. 4, p. 86 (in Russian).
  13. Pavel’ev A. G., Yakovlev O. I., Kucheryavenkov A. I. et al., Attempt to perform bistatic radio location of the Sun using Venera-16, Radiophysics and Quantum Electronics, 1988, V. 31, No. 2, pp. 91–95, https://doi.org/10.1007/BF01039170.
  14. Pavel’ev A. G., Zakharov A. I., Kucheryavenkov A. I., Sidorenko A. I., Kucheryavenkova I. I., Pavel’ev D. A., Features of propagation of radio waves reflected from the Earth’s surface at small grazing angles on the low-orbit satellite – geostationary satellite, Radiotekhnika i elektronika, 1997, V. 42, No. 1, pp. 51–57 (in Russian).
  15. Potemkin E. O., Kucheryavenkov I. A., Matyugov S. S., Pavel’ev A. G., Bistatic radio location of the Earth’s surface from space, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, V. 9, No. 4, pp. 37–46 (in Russian).
  16. Radiolokatsionnye metody i sredstva operativnogo distantsionnogo zondirovaniya Zemli s aehrokosmicheskikh nositelei (Radar methods and means of operational remote sensing of the Earth from aerospace carriers), S. N. Konyukhova, V. I. Dranovskogo, V. N. Tsymbala (eds.), Kiev: Aviadiagnostika, 2007, 440 p. (in Russian).
  17. Rubashkin S. G., Pavel’ev A. G., Yakovlev O. I., Kucheryavenkov A. I., Sidorenko A. I., Zakharov A. I., Reflection of radio waves by the ocean surface in bistatic location using two satellites, Radiotekhnika i elektronika, 1993, V. 38, No. 3, pp. 447–453 (in Russian).
  18. Sakhno I. V., Tkachev E. A., Gavrilov D. A., Uspenskii K. K., Small spacecraft for sea surface survey using signals from satellite radio navigation systems, Izvestiya vuzov. Priborostroenie, 2009, V. 52, No. 4, pp. 34–39 (in Russian).
  19. Yakovlev O. I., Rasprostranenie radiovoln v kosmose (Propagation of radio waves in space), Moscow: Nauka, 1985, 216 p. (in Russian).
  20. Galileo Open Service Signal-in-Space Interface Control Document (OS SIS ICD). Iss. 2.1, European Union, 2023, 115 p., https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_OS_SIS_ICD_v2.1.pdf.
  21. Gleason S., Towards sea ice remote sensing with space detected GPS signals: Demonstration of technical feasibility and initial consistency check using low resolution sea ice information, Remote Sensing, 2010, V. 2, No. 8, pp. 2017–2039, https://doi.org/10.3390/rs2082017.
  22. Hobiger T., Haas R., Löfgren J. S., GLONASS-R: GNSS reflectometry with a frequency division multiple access-based satellite navigation system, Radio Science, 2014, V. 49, Iss. 4, pp. 271–282, DOI: 10.1002/2013RS005359.
  23. Karaev V., Titchenko Y., Panfilova M. et al., Application of the Doppler spectrum of the backscattering microwave signal for monitoring of ice cover: A theoretical view, Remote Sensing, 2022, V. 14, No. 10, Article 2331, https://doi.org/10.3390/rs14102331.
  24. Li W., Cardellach E., Fabra F. et al., First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals, Geophysical Research Letters, 2017, V. 44, Iss. 16, pp. 8369–8376, https://doi.org/10.1002/2017GL074513.
  25. Lopatin V., Fateev V., Methods of bistatic GNSS-radio altimetry for determining height profile of the ocean and their experimental verification, 5 th Symp. Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2019). Intern. Association of Geodesy Symp., 2022, V. 153, pp. 127–132, DOI: https://doi.org/10.1007/1345_2022_139.
  26. Martín-Neira M., A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry, ESA J., 1993, V. 17, No. 4, pp. 331–355.
  27. Martin-Neira M., Colmenarejo P., Ruffini G., Serra C., Altimetry precision of 1 cm over a pond using the wide-lane carrier phase of GPS reflected signals, Canadian J. Remote Sensing, 2002, V. 28, No. 3, pp. 394–403, https://doi.org/10.5589/m02-039.
  28. Nekrasov A., Khachaturian A., Labun J. et al., Towards the sea ice and wind measurement by a C-band scatterometer at dual VV/HH polarization: A prospective appraisal, Remote Sensing, 2020, V. 12, No. 20, Article 3382, https://doi.org/10.3390/rs12203382.
  29. Nogues‐Correig O., Cardellach Gali E., Sanz Campderros J., Rius A., A GPS-reflections receiver that computes Doppler/delay maps in real time, IEEE Trans. Geoscience and Remote Sensing, 2007, V. 45, No. 1, pp. 156–174, DOI: 10.1109/TGRS.2006.882257.
  30. Nouguier F., Mouche A., Rascle N. et al., Analysis of dual-frequency ocean backscatter measurements at Ku- and Ka-bands using near-nadir incidence GPM radar data, IEEE Geoscience and Remote Sensing Letters, 2016, V. 13, No. 9, pp. 1310–1314, DOI: 10.1109/LGRS.2016.2583198.
  31. Ryabkova M., Karaev V., Guo J., Titchenko Y., A review of wave spectrum models as applied to the problem of radar probing of the sea surface, J. Geophysical Research: Oceans, 2019, V. 124, No. 10, pp. 7104–7134, https://doi.org/10.1029/2018JC014804.
  32. Schiavulli D., Frappart F., Ramillien G. et al., Observing sea/ice transition using radar images generated from TechDemoSat-1 dlay Doppler maps, IEEE Geoscience and Remote Sensing Letters, 2017, V. 14, No. 5, pp. 734–738, DOI: 10.1109/LGRS.2017.2676823.
  33. Sutton R., Schroeder E., Thompson A., Wilson S., Satellite-aircraft multipath and ranging experiment results at L band, IEEE Trans. Communications, 1973, V. 21, No. 5, pp. 639–647, DOI: 10.1109/TCOM.1973.109169.
  34. Titchenko Y., Bistatic Doppler spectrum of radiation reflected by a water surface, Russian J. Earth Sciences, 2020, V. 20, No. 6, Article ES6007, 8 p., DOI: 10.2205/2020ES000745.
  35. Unwin M., Jales P., Tye J. et al., Spaceborne GNSS-reflectometry on TDS-1: Early mission operations and exploitation, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, V. 9, Iss. 10, pp. 4525–4539, DOI: 10.1109/JSTARS.2016.2603846.
  36. Zavorotny V. U., Voronovich A. G., Scattering of GPS signals from the ocean with wind remote sensing application, IEEE Trans. Geoscience and Remote Sensing, 2000, V. 38, No. 2, pp. 951–964, DOI: 10.1109/36.841977.
  37. Zavorotny V., Loria E., O’Brien A. et al., Investigation of coherent and incoherent scattering from lakes using CYGNSS observations, IGARSS 2020 — 2020 IEEE Intern. Geoscience and Remote Sensing Symp., 2020, pp. 5917–5920, DOI: 10.1109/igarss39084.2020.9323677.