ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 344-355

Analysis of ice concentration in the Kara Sea based on SMOS MIRAS data using machine learning methods

V.V. Tikhonov 1, 2, 3 , D.R. Katamadze 4 , T.A. Alekseeva 3, 1 , E.V. Afanasyeva 3, 1 , J.V. Sokolova 3, 1 , I.V. Khvostov 2 , A.N. Romanov 2 
1 Space Research Institute RAS, Moscow, Russia
2 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
3 Arctic and Antarctic Research Institute, Saint Petersburg, Russia
4 Lomonosov Moscow State University, Moscow, Russia
Accepted: 29.11.2024
DOI: 10.21046/2070-7401-2024-21-6-344-355
The paper presents the first results of a study on the use of data from Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) of Soil Moisture and Ocean Salinity (SMOS) satellite to determine ice concentration in the Kara Sea. The SMOS L1C brightness temperature dynamics in 2022–2023 has been studied for eight regions of the Kara Sea. Machine learning methods were used to determine ice concentration in the selected areas from the SMOS L1C data. The study involved eight machine learning models employing a supervised learning approach. The training was performed based on data for 2022. The quality of predictions by the machine learning models was verified using data for 2023. By analyzing the three quality metrics, the optimal machine learning model (XGBoost) was selected as capable of obtaining good results in determining ice concentration from SMOS MIRAS data. The conducted studies show the prospect of employing machine learning to assess the state of the Arctic sea ice cover using data from the MIRAS radiometer of the SMOS satellite.
Keywords: satellite microwave radiometry, brightness temperature, sea ice concentration, visible range, infrared range, machine learning methods
Full text

References:

  1. Alekseeva T. A., Sokolova J. V., Afanasyeva E. V. et al., The contribution of sea-ice contamination to inaccuracies in sea-ice concentration retrieval from satellite microwave radiometry data during the ice-melt period, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 12, pp. 1470–1484, DOI: 10.1134/S0001433822120039.
  2. Alekseeva T. A., Serovetnikov S. S., Makarov E. I. et al., The influence of heavy shipping traffic on the structure and dynamics of sea ice in the southwestern Kara Sea, Arctic and Antarctic Research, 2024; Vol. 70, No. 3, pp. 323–337 (in Russian), https://doi.org/10.30758/05552648-2024-70-3-323-337.
  3. Afanasyeva E. V., Sokolova J. V., Tikhonov V. V., Ermakov D. M., Problems of using space-borne SAR data in solving the issue of ice charting automation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 9–27 (in Russian), DOI: 10.21046/2070-7401-2024-21-1-9-27.
  4. Zabolotskikh E. V., Khvorostovsky K. S., Zhivotovskaya M. A. et al., Satellite microwave remote sensing of the Arctic sea ice: Review, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 9–34 (in Russian), DOI: 10.21046/2070-7401-2023-20-1-9-34.
  5. Kutuza B. G., Yakovlev O. I., Danilyichev M. V. Sputnikovyi monitoring Zemli: Microvolnovaya radiometriya atmosphery i poverkhnosti (Satellite Earth monitoring: Microwave radiometry of the atmosphere and surface), Moscow: LENAND, 2016, 336 p. (in Russian).
  6. Raschka S., Mirjalili V., Python machine learning: Machine learning and deep learning using Python, scikit-learn, and TensorFlow 2, 3rd ed., Birmingham: Packt Publishing, 2019, 770 p.
  7. Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining sea ice cover characteristics), Smirnov V. G. (ed.), Saint Petersburg: Arctic and Antarctic Research Inst., 2011, 240 p. (in Russian).
  8. Tikhonov V. V., Raev M. D., Sharkov E. A. et al., Satellite microwave radiometry of sea ice of polar regions: A review, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 1012–1030, https://doi.org/10.1134/S0001433816090267.
  9. Tikhonov V. V., Khvostov I. V., Romanov A. N. et al., Features of the intrinsic L-band radiation of the Gulf of Ob during the freeze-up period, Izvestiya, Atmospheric and Oceanic Physics, 2020, Vol. 56, No. 9, pp. 936–949, https://doi.org/10.1134/S0001433820090236.
  10. Tikhonov V. V., Alekseeva T. A., Afanasyeva E. V. et al., On the possibility to determine the concentration of Arctic sea ice using SMOS satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 329–335 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-329-335.
  11. Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A., A model of microwave emission from mouth regions of Arctic rivers providing for radiometer pixel land contamination, Izvestiya, Atmospheric and Oceanic Physics, 2024, Vol. 60, No. 9 (in press).
  12. Flach P., Machine Learning — The art and science of algorithms that make sense of data, Cambridge: Cambridge University Press, 2012, 396 p.
  13. Alekseeva T., Tikhonov V., Frolov S. et al., Comparison of arctic sea ice concentrations from the NASA Team, ASI, and VASIA2 algorithms with summer and winter ship data, Remote Sensing, 2019, Vol. 11, No. 21, Article 2481, 31 p., https://doi.org/10.3390/rs11212481.
  14. Ali Z. A., Abduljabbar Z. H., Tahir H. A. et al., Exploring the power of eXtreme gradient boosting algorithm in machine learning: A review, Academic J. Nawroz University (AJNU), 2023, Vol. 12, No. 2, pp. 320–334, DOI: 10.25007/ajnu.v12n2a1612.
  15. Kern S., Lavergne T., Pedersen L. T. et al., Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data, The Cryosphere, 2022, Vol. 16, No. 1, pp. 349–378, https://doi.org/10.5194/tc-16-349-2022.
  16. Kim S., Kim H., A new metric of absolute percentage error for intermittent demand forecasts, Intern. J. Forecasting, 2016, Vol. 32, No. 3, pp. 669–679, https://doi.org/10.1016/j.ijforecast.2015.12.003.
  17. Mohri M., Rostamizadeh A., Talwalkar A., Foundations of machine learning, 2nd ed., MIT Press, 2018, 498 p.
  18. Plevris V., Solorzano G., Bakas N., Ben Seghier M., Investigation of performance metrics in regression analysis and machine learning-based prediction models, Proc. 8 th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022), 5–9 June 2022, Oslo, Norway, 2022, 25 p., DOI: 10.23967/eccomas.2022.155.
  19. Raizer V., Advances in passive microwave remote sensing of oceans, CRC Press, 2017, 262 p.
  20. Remote sensing of the cryosphere, Tedesco M. (ed.), Oxford: John Wiley and Sons, 2015, 404 p.
  21. Shalev-Shwartz S., Ben-David S., Understanding machine learning: From theory to algorithms, Cambridge: Cambridge University Press, 2014, 449 p.
  22. Wernecke A., Notz D., Kern S., Lavergne T., Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals, The Cryosphere, 2024, Vol. 18, No. 5, pp. 2473–2486, https://doi.org/10.5194/tc-18-2473-2024.