Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 253-266
Influence of topography on the movement of mesoscale eddies along the continental slope of the New Zealand Plateau
T.V. Belonenko
1 , V.S. Travkin
1, 2 , V.G. Gnevyshev
3 , A.V. Kochnev
4 1 Saint Petersburg State University, Saint Petersburg, Russia
2 N. N. Zubov’s State Oceanographic Institute, Moscow, Russia
3 P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia
4 Northern (Arctic) Federal University, Arkhangelsk, Russia
Accepted: 07.10.2024
DOI: 10.21046/2070-7401-2024-21-6-253-266
This paper examines mesoscale eddies along the slope of the New Zealand Plateau. The study is based on altimetric measurements from 1993 to 2022: absolute dynamic topography and the META3.2 product. Additionally, data from the global oceanic reanalysis GLORYS12V1 for the same period are used. It is shown that a jet topographic flow is formed on the slope of the New Zealand Plateau, which runs along the slope in a narrow strip. The velocities of this topographic flow reach 70 cm/s when averaged over 1993–2022. It has been established that the generation of mesoscale eddies mainly occurs on the periphery of the topographic flow. Anticyclones are formed on the northern (shallow) periphery of the flow, and cyclones are generated on the southern (deep-water) periphery. The section across the slope is considered, and its parts where the flow velocity components normal to the section are maximal are determined. The trajectories of 1401 cyclones and 1488 anticyclones isolated from 1993–2022 with a life expectancy exceeding 10 days are analyzed. It is shown that the trajectories of cyclones and anticyclones are controlled by topography. In most cases, the trajectories of cyclones and anticyclones have a similar shape and are spaced apart.
Keywords: New Zealand Plateau, seafloor topography, slope, topographic flow, mesoscale eddies, altimetry
Full textReferences:
- Belonenko T. V., Volkov D. L., Koldunov A. V., Shelf waves in the Beaufort Sea in a high-resolution ocean model, Oceanology, 2018, Vol. 58, No. 6, pp. 778–785, https://doi.org/10.1134/S0001437018060024.
- Gnevyshev V. G., Belonenko T. V., Doppler effect and Rossby waves in the ocean: A brief history and new approaches, Fundamental and Applied Hydrophysics, 2023, Vol. 16, No. 3, pp. 72–92 (in Russian), DOI: 10.59887/2073-6673.2023.16(3)-6.
- Gnevyshev V. G., Frolova A. V., Koldunov A. V., Belonenko T. V., Topographic effect for Rossby waves on a zonal shear flow, Fundamental and Applied Hydrophysics, 2021, Vol. 14, No. 1, pp. 4–14 (in Russian), DOI: 10.7868/S2073667321010019.
- Gnevyshev V. G., Travkin V. S., Belonenko T. V. (2023a), Topographic factor and limit transitions in the equations for subinertial waves, Fundamental and Applied Hydrophysics, 2023, Vol. 16, No. 1, pp. 8–23 (in Russian), DOI: 10.48612/fpg/92rg-6t7h-m4a2.
- Gnevyshev V. G., Travkin V. S., Belonenko T. V. (2023b), Group velocity and dispersion of Buchwald and Adams Shelf Waves. A new analytical approach, Fundamental and Applied Hydrophysics, 2023, Vol. 16, No. 2, pp. 8–20 (in Russian), DOI: 10.59887/2073–6673.2023.16(2)-1.
- Zhmur V. V., Novoselova E. V., Belonenko T. V., Potential vorticity in the ocean: Ertel and Rossby approaches with estimates for the Lofoten Vortex, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, pp. 632–641, DOI: 10.1134/S0001433821050157.
- Zhmur V. V., Travkin V. S., Belonenko T. V., Arutyunyan D. A., Transformation of kinetic and potential energy during elongation of a mesoscale vortex, Physical Oceanography, 2022, Vol. 29, No. 5, pp. 449–462, DOI: 10.22449/1573-160X-2022-5-449-462.
- Zhmur V. V., Belonenko T. V., Novoselova E. V., Suetin B. P. (2023a), Direct and inverse energy cascades in the ocean during vortex elongation, Doklady Earth Sciences, 2023, Vol. 507 (Suppl. 3), pp. S457–S460, DOI: 10.1134/S1028334X22601675.
- Zhmur V. V., Belonenko T. V., Novoselova E. V., Suetin B. S. (2023b), On the stretching of mesoscale vortices into filaments and their distribution over the ocean surface, Radiophysics and Quantum Electronics, 2023, Vol. 66, pp. 93–108, DOI: 10.1007/s11141-023-10278-4.
- Zatsepin A. G., Elkin D. N., Underwater ridge impact on the motion of anticyclonic eddies over a sloping bottom as a result of the topographic beta-effect: laboratory experiment, Physical Oceanography, 2024, Vol. 31, No. 2, pp. 271–283.
- Monin A. S., Kamenkovich V. M., Kort V. G., Izmenchivost’ Mirovogo okeana (Variability of the World Ocean), Leningrad: Izd. Gidrometeoizdat, 1974, 264 p. (in Russian).
- Sandalyuk N. V., Belonenko T. V., Koldunov A. V., Shelf waves in the Great Australian Bight based on satellite altimetry data, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, pp. 1117–1126, https://doi.org/10.1134/S0001433821090619.
- Travkin V. S., Belonenko T. V., Study of the mechanisms of vortex variability in the Lofoten Basin based on energy analysis, Physical Oceanography, 2021, Vol. 28, No. 3, pp. 294–308, DOI: 10.22449/1573-160X-2021-3-294-308.
- Travkin V. S., Gnevyshev V. G., Belonenko T. V., Mesoscale eddies on the continental slope of the New Zealand Plateau based on altimetry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 221–233 (in Russian), DOI: 10.21046/2070-7401-2024-21-3-221-233.
- Khudyakova S. P., Travkin V. S., Belonenko T. V., Mesoscale eddies of the Aleutian Trench, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 211–221 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-211-221.
- Arbic B. K., Scott R. B., Flierl G. R. et al., Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain, J. Physical Oceanography, 2012, Vol. 42, No. 9, pp. 1577–1600, DOI: 10.1175/jpo-d-11-0151.1.
- Belonenko T. V., Travkin V. S., Koldunov A. V. et al., Topographic experiments over dynamical processes in the Norwegian Sea, Russian J. Earth Sciences, 2021, Vol. 21, Article ES1006, DOI: 10.2205/2020ES000747.
- Bower A. S., Le Cann B., Rossby T. et al., Directly measured mid-depth circulation in the northeastern North Atlantic Ocean, Nature, 2002, Vol. 419, No. 6907, pp. 603–607, https://doi.org/10.1038/nature01078.
- Bower A. S., Lozier M. S., Gary S. F. et al., Interior pathways of the North Atlantic meridional overturning circulation, Nature, 2009, Vol. 459, No. 7244, pp. 243–247, DOI: 10.1038/nature07979.
- Charney J. G. The dynamics of long waves in a baroclinic westerly current, In: The Atmosphere — A Challenge, American Meteorological Soc., Boston, 1990, pp. 223–250.
- Chelton D. B., Schlax M. G., Samelson R. M., Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 2011, Vol. 91, No. 2, pp. 167–216, DOI: 10.1016/j.pocean.2011.01.002.
- Eady E. T., Long waves and cyclone waves, Tellus A, 1949, Vol. 1, No. 3, pp. 33–52, DOI: 10.1111/J.2153-3490.1949.TB01265.X.
- Ferrari R., Wunsch C., Ocean circulation kinetic energy: reservoirs, sources, and sinks, Annu. Review of Fluid Mechanics, 2009, Vol. 41, pp. 253–282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.
- Gill A., Green J., Simmons A., Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies, Deep Sea Research and Oceanographic Abstracts, 1974, Vol. 21, pp. 499–528, https://doi.org/10.1016/0011-7471(74)90010-2.
- Gill A. E., Atmosphere-Ocean Dynamics, 1st ed., Vol. 30, Academic Press, 1982.
- Gille S. T., Float observations of the southern ocean. Pt. I: Estimating mean fields, bottom velocities, and topographic steering, J. Physical Oceanography, 2003, Vol. 33, No. 6, pp. 1167–1181, https://doi.org/10.1175/1520-0485(2003)033<1167:FOOTSO>2.0.CO;2.
- Gnevyshev V. G., Frolova A. V., Belonenko T. V., Topographic effect for Rossby waves on non-zonal shear flow, Water Resources, 2022, Vol. 49, No. 2, pp. 240–248, DOI: 10.1134/S0097807822020063.
- Gnevyshev V. G., Travkin V. S., Belonenko T. V., Mixed topographic-planetary waves in a stratified ocean on a background flow, Pure and Applied Geophysics, 2024, Vol. 181, pp. 2359–2371, https://doi.org/10.1007/s00024-024-03527-8.
- Hogg N. G., Johns W. E., Western boundary currents, Reviews of Geophysics, 1995, Vol. 33, Iss. S2, pp. 1311–1334, https://doi.org/10.1029/95RG00491.
- Isachsen P. E., Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modelling, 2011, Vol. 39, No. 1, pp. 183–199, https://doi.org/10.1016/j.ocemod.2010.09.007.
- Isachsen P. E., LaCasce J., Mauritzen C., Häkkinen S., Wind-driven variability of the large-scale recirculating flow in the Nordic Seas and Arctic Ocean, J. Physical Oceanography, 2003, Vol. 33, No. 12, pp. 2534–2550, https://doi.org/10.1175/1520-0485(2003)033<2534:WVOTLR>2.0.CO;2.
- LaCasce J., Floats and f/h, J. Marine Research, 2000, Vol. 58, No. 1, pp. 61–95, DOI: 10.1357/002224000321511205.
- LaCasce J. H., Escartin J., Chassignet E. P. et al., Jet instability over smooth, corrugated, and realistic bathymetry, J. Physical Oceanography, 2018, Vol. 49, Iss. 2, pp. 585–605, DOI: 10.1175/jpo-d-18-0129.1.
- LaCasce J. H., Palóczy A., Trodahl M., Vortices over bathymetry, J. Fluid Mechanics, 2024, Vol. 979, Article A32, 31 p., DOI: 10.1017/jfm.2023.1084.
- Lorenz E. N., Available potential energy and the maintenance of the general circulation, Tellus, 1955, Vol. 7, Iss. 2, pp. 157–167, DOI: 10.1111/j.2153-3490.1955.tb01148.x.
- Pedlosky J. Geophysical fluid dynamics, New York: Springer, 1987, 710 p.
- Pegliasco C., Busché C., Faugère Y., Mesoscale eddy trajectory atlas META3.2 delayed-time all satellites: version META3.2 DT allsat, 2022, https://doi.org/10.24400/527896/A01-2022.005.210802.
- Phillips N. A., A simple three-dimensional model for the study of large-scale extratropical flow patterns, J. Meteorology, 1951, Vol. 8, No. 6, pp. 381–394, DOI: 10.1175/1520-0469(1951)008<0381:astdmf>2.0.co.
- Poulin F. J., Flierl G. R., The nonlinear evolution of barotropically unstable jets, J. Physical Oceanography, 2003, Vol. 33, No. 10, pp. 2173–2192, DOI: 10.1175/1520-0485(2003)033<2173:tneobu>2.0.
- Rhines P. B., The dynamics of unsteady currents, In: The Sea, Goldberg E. D., McCane I. N., O’Brien J. J., Steele J. H. (eds.), Vol. 6, New York: Wiley, 1977, pp. 189–318.
- Salmon R., Lectures on geophysical fluid dynamics, Oxford: Oxford University Press, 1998.
- Smith K. S., The geography of linear baroclinic instability in Earth’s oceans, J. Marine Research, 2007, Vol. 65, No. 5, pp. 655–683, DOI: 10.1357/002224007783649484.
- Stewart R. H., Introduction to physical oceanography, Prentice Hall, 2008, 351 p.
- Talley L. D., Pickard G. L., Emery W. J., Swift J. H., Descriptive physical oceanography: An introduction, Academic Press, 2011.
- Trodahl M., Isachsen P. E., Topographic influence on baroclinic instability and the mesoscale eddy field in the northern North Atlantic Ocean and the Nordic Seas, J. Physical Oceanography, 2018, Vol. 48, No. 11, pp. 2593–2607, https://doi.org/10.1175/JPO-D-17-0220.1.
- Zhmur V. V., Belonenko T. V., Travkin V. S. et al., Changes in the available potential and kinetic energy of mesoscale vortices when they are stretched into filaments, J. Marine Science and Engineering, 2023, Vol. 11, No. 6, Article 1131, https://doi.org/10.3390/jmse11061131.