ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 294-308

On the issue of determining the scattering diagram of ice cover using bistatic remote sensing data in the L-band

D.A. Kovaldov 1 , Yu.A. Titchenko 1 , V.Yu. Karaev 1 , M.A. Panfilova 1 , V.P. Lopatin 2 , V.F. Fateev 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Russian Metrological Institute of Technical Physics and Radioengineering, Solnechnogorsk, Moscow Region, Russia
Accepted: 07.11.2024
DOI: 10.21046/2070-7401-2024-21-6-294-308
The possibilities of the bistatic sensing scheme implemented using the TDS-1 satellite (TechDemoSat-1) and global navigation satellite systems (GNSS) for detecting sea ice and determining the sea ice scattering diagram in the L-band are considered. The proposed approach is based on determining the scattering diagrams of sea waves and sea ice using the delay-Doppler map (DDM) of the reflected GNSS signal. During processing, the Doppler spectrum (DS) of the reflected signal recorded by the receiver in the bistatic GNSS-Reflectometry (GNSS-R) sensing scheme is analyzed. In such a measurement scheme, the DS width depends on the projection of the receiver velocity on the reflected rays connecting the reflecting points on the surface with the receiver. In this case, it can be assumed that the incident GNSS radiation in the reflection region has a flat front, therefore only the central frequency of the DS shift depends on the projection of the emitter velocity. Thus, knowing the geometry of the problem: emitter – mirror reflection point – receiver, it is possible to determine the corresponding grazing angle of the reflected beam for each frequency of the measured DS. The proposed algorithm was applied to the TDS-1 satellite data, which were obtained during measurements over Antarctica in the Weddell Sea region and in the Atlantic Ocean, as well as in the Sea of Okhotsk. To verify the type of reflecting surface (ice/water), the data on the ice cover concentration of the AMSR-2 (Advanced Microwave Scanning Radiometer-2) radiometer were used. The assumption that the width of the Doppler spectrum from sea ice is significantly smaller than from sea waves was confirmed. Scattering patterns for sea waves and sea ice were reconstructed and the obtained dependencies were compared with the dependencies of the GPM (Global Precipitation Measurement) mission based on radar data in the Ku range.
Keywords: GNSS, quasi-specular reflection, L-band, scatter pattern, sea ice remote sensing, TDS-1
Full text

References:

  1. Lopatin V. P., Murzabekov M. M., Bobrov D. S., Results of determining the geoid height profile and vertical line deviation using GNSS signals reflected from water surface, Geodeziya i kartografiya, 2024, No. 2, pp. 21–30 (in Russian), DOI: 10.22389/0016-7126-2024-1004-2-21-30.
  2. Chernoukhov V. V., Dobykin V. D., Scattering of electromagnetic waves by the sea surface at two-position location, Radiotekhnika i ehlektronika, 1995, Vol. 40, No. 3, pp. 464–471 (in Russian).
  3. Alonso Arroyo A., Camps A., Aguasca A. et al., Dual-polarization GNSS-R interference pattern technique for soil moisture mapping, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2014, Vol. 7, No. 5, pp. 1533–1544, DOI: 10.1109/JSTARS.2014.2320792.
  4. Camps A., Park H., Pablos M. et al., Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, No. 10, pp. 4730–4742, DOI: 10.1109/JSTARS.2016.2588467.
  5. Cardellach E., Fabra F., Nogués-Correig O. et al., GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets, Radio Science, 2011, Vol. 46, No. 6, Article RS0C04, 16 p., DOI: 10.1029/2011RS004683.
  6. Cartwright J., Novel applications of GNSS-R data from TechDemoSat-1 to monitoring the cryosphere: Thesis for the degree of Doctor of Philosophy, University of Southampton, United Kingdom, 2021, 151 p.
  7. Cartwright J., Banks C. J., Srokosz M., Sea ice detection using GNSS-R data from TechDemoSat-1, J. Geophysical Research: Oceans, 2019, Vol. 124, Iss. 8, pp. 5801–5810, DOI: 10.1029/2019JC015327.
  8. Chew C., Shah R., Zuffada C. et al., Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission, Geophysical Research Letters, 2016, Vol. 43, Iss. 7, pp. 3317–3324, DOI: 10.1002/2016GL068189.
  9. Clarizia M. P., Gommenginger C. P., Gleason S. T. et al., Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean, Geophysical Research Letters, 2009, Vol. 36, Iss. 2, Article L02608, 5 p., DOI: 10.1029/2008GL036292.
  10. Clarizia M. P., Ruf C. S., Jales P., Gommenginger C., Spaceborne GNSS-R minimum variance wind speed estimator, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 11, pp. 6829–6843, DOI: 10.1109/TGRS.2014.2303831.
  11. Dielacher A., Fragner H., Moritsch M., Høeg P., Wickert J., Cardellach E., Koudelka O., Beck P., Walker R., Martin-Neira M., Lissi F. P., The passive reflectometer on board of PRETTY, Proc. ESA ARSI+KEO Conf., 2019.
  12. Gleason S., Remote sensing of ocean, ice and land surfaces using bistatically scattered GNSS signals from low Earth orbit: Thesis for the degree of Doctor of Philosophy, University of Surrey, UK, 2006, 223 p.
  13. Gleason S., Towards sea ice remote sensing with space detected GPS signals: Demonstration of technical feasibility and initial consistency check using low resolution sea ice information, Remote Sensing, 2010, Vol. 2, Iss. 8, pp. 2017–2039, DOI: 10.3390/rs2082017.
  14. Gleason S., Hodgart S., Sun Y. et al., Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 6, pp. 1229–1241, DOI: 10.1109/TGRS.2005.845643.
  15. Gleason S., Lowe S., Zavorotny V., Remote sensing using bistatic GNSS reflections, In: GNSS Applications and Methods, Norwood, MA: Artech House, 2009, pp. 399–436.
  16. GPM Data Utilization Handbook, 1st ed., JAXA, Japan, 2014, 92 p.
  17. Hall C. D., Cordey R. A., Multistatic Scatterometry, Proc. Intern. Geoscience and Remote Sensing Symp. “Remote Sensing: Moving Toward the 21st Century”, 1988, Vol. 1, pp. 561–562, DOI: 10.1109/IGARSS.1988.570200.
  18. Hobiger T., Haas R., Löfgren J. S., GLONASS-R: GNSS reflectometry with a frequency division multiple access-based satellite navigation system, Radio Science, 2014, Vol. 49, Iss. 4, pp. 271–282, DOI: 10.1002/2013RS005359.
  19. Huang F., Sun Y., Xia J. et al., Progress on the GNSS-R product from Fengyun-3 missions, IGARSS 2024 — 2024 IEEE Intern. Geoscience and Remote Sensing Symp., 2024, pp. 6717–6720, DOI: 10.1109/IGARSS53475.2024.10640688.
  20. Juang J.-C., Ma S.-H., Lin C.-T., Study of GNSS-R techniques for FORMOSAT mission, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, No. 10, pp. 4582–4592, DOI: 10.1109/JSTARS.2016.2575069.
  21. Karaev V., Titchenko Y., Panfilova M. et al. (2022a), Application of the Doppler spectrum of the backscattering microwave signal for monitoring of ice cover: A theoretical view, Remote Sensing, 2022, Vol. 14, Iss. 10, Article 2331, 23 p., DOI: 10.3390/rs14102331.
  22. Karaev V., Titchenko Y., Panfilova M. et al. (2022b), On the problem of the sea ice detection by orbital microwave Doppler radar at the nadir sounding, Remote Sensing, 2022, Vol. 14, Iss. 19, Article 4937, 18 p., DOI: 10.3390/rs14194937.
  23. Lagerloef G., Colomb F. C., Le Vine D. et al., The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge, Oceanography, 2008, Vol. 21, No. 1, pp. 68–81, DOI: 10.5670/oceanog.2008.68.
  24. Larson K. M., Gutmann E. D., Zavorotny V. U. et al., Can we measure snow depth with GPS receivers? Geophysical Research Letters, 2009, Vol. 36, Iss. 17, Article L17502, 5 p., DOI: 10.1029/2009GL039430.
  25. Li C., Huang W., An algorithm for sea-surface wind field retrieval from GNSS-R delay-Doppler map, IEEE Geoscience and Remote Sensing Letters, 2014, Vol. 11, No. 12, pp. 2110–2114, DOI: 10.1109/LGRS.2014.2320852.
  26. Lopatin V., Fateev V., Methods of bistatic GNSS-radio altimetry for determining height profile of the ocean and their experimental verification, Symp. Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2019), 2022, Vol. 153, pp. 127–132, DOI: 10.1007/1345_2022_139.
  27. Martín-Neira M., A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry, ESA J., 1993, Vol. 17, pp. 331–355.
  28. McMullan K. D., Brown M. A., Martín-Neira M. et al., SMOS: The payload, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 3, pp. 594–605, DOI: 10.1109/TGRS.2007.914809.
  29. Melsheimer C., Spreen G., AMSR-2 ASI sea ice concentration data, Antarctic, version 5.4 (NetCDF) (July 2012 – December 2018), PANGAEA, 2019, DOI: 10.1594/PANGAEA.898400.
  30. Najibi N., Jin S., Physical reflectivity and polarization characteristics for snow and ice-covered surfaces interacting with GPS signals, Remote Sensing, 2013, Vol. 5, Iss. 8, pp. 4006–4030, DOI: 10.3390/rs5084006.
  31. Nogués-Correig O., Galí E. C., Campderrós J. S., Rius A., A GPS-reflections receiver that computes Doppler/delay maps in real time, IEEE Trans. Geoscience and Remote Sensing, 2007, Vol. 45, No. 1, pp. 156–174, DOI: 10.1109/TGRS.2006.882257.
  32. Panfilova M., Karaev V., Sea ice detection by an unsupervised method using Ku- and Ka-band radar data at low incidence angles: First results, Remote Sensing, 2023, Vol. 15, Iss. 14, Article 3530, 12 p., DOI: 10.3390/rs15143530.
  33. Panfilova M., Karaev V., Sea ice detection method using the dependence of the radar cross-section on the incidence angle, Remote Sensing, 2024, Vol. 16, Iss. 5, Article 859, 10 p., DOI: 10.3390/rs16050859.
  34. Ruf C. S., Atlas R., Chang P. S. et al., New ocean winds satellite mission to probe hurricanes and tropical convection, Bull. American Meteorological Soc., 2016, Vol. 97, Iss. 3, pp. 385–395, DOI: 10.1175/BAMS-D-14-00218.1.
  35. Sun Y., Huang F., Xia J. et al., GNOS-II on Fengyun-3 satellite series: Exploration of multi-GNSS reflection signals for operational applications, Remote Sensing, 2023, Vol. 15, Iss. 24, Article 5756, 26 p., DOI: 10.3390/rs15245756.
  36. Sutton R., Schroeder E., Thompson A. et al., Satellite-aircraft multipath and ranging experiment results at L-band, IEEE Trans. Communications, 1973, Vol. 21, No. 5, pp. 639–647, DOI: 10.1109/TCOM.1973.1091693.
  37. Unwin M., Jales P., Tye J. et al., Spaceborne GNSS-reflectometry on TechDemoSat-1: Early mission operations and exploitation, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, No. 10, pp. 4525–4539, DOI: 10.1109/JSTARS.2016.2603846.
  38. Yan Q., Huang W., Sea ice sensing from GNSS-R data using convolutional neural networks, IEEE Geoscience and Remote Sensing Letters, 2018, Vol. 15, No. 10, pp. 1510–1514, DOI: 10.1109/LGRS.2018.2852143.
  39. Yan Q., Huang W., Sea ice remote sensing using GNSS-R: A review, Remote Sensing, 2019, Vol. 11, Iss. 21, Article 2565, 26 p., DOI: 10.3390/rs11212565.
  40. Yan Q., Huang W., Moloney C., Neural networks based sea ice detection and concentration retrieval from GNSS-R delay-Doppler maps, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 8, pp. 3789–3798, DOI: 10.1109/JSTARS.2017.2689009.
  41. Yang T., Wan W., Sun Z. et al., Comprehensive evaluation of using TechDemoSat-1 and CYGNSS data to estimate soil moisture over Mainland China, Remote Sensing, 2020, Vol. 12, Iss. 11, Article 1699, 19 p., DOI: 10.3390/rs12111699.
  42. Zavorotny V. U., Gleason S., Cardellach E. et al., Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity, IEEE Geoscience and Remote Sensing Magazine, 2014, Vol. 2, No. 4, pp. 8–45, DOI: 10.1109/MGRS.2014.2374220.
  43. Zhu Y., Yu K., Zou J., Wickert J., Sea ice detection based on differential delay-Doppler maps from UK TechDemoSat-1, Sensors, 2017, Vol. 17, Iss. 7, Article 1614, 18 p., DOI: 10.3390/s17071614.