ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 97-116

Satellite observation datasets and web-services of gas and aerosol composition of the atmosphere

A.A. Tronin 1 , M.P. Vasiliev 1 , G.M. Nerobelov 1 , V.S. Urmanov 1 , A.V. Kiselev 1 
1 Saint Petersburg Federal Research Center RAS, Saint Petersburg, Russia
Accepted: 18.09.2024
DOI: 10.21046/2070-7401-2024-21-6-97-116
The review focuses on available satellite measurements of the main gaseous and aerosol pollutants and the means by which the data are provided. The article discusses the main publicly available satellite measurement datasets, which are distributed to the end user either by posting the data on a research team’s web page (for example, a laboratory’s website) or through a specially developed web service. According to the study, NASA’s GES DISC (National Aeronautics and Space Administration, Goddard Earth Sciences Data and Information Services Center) web service is the most effective in terms of air quality analysis. This is ensured by the free dissemination of pollutant content information based on measurements by two existing high-quality measuring instruments — OMI (Ozone Monitoring Instrument) and TROPOMI (Tropospheric Monitoring Instrument) (and not only them); providing high temporal and spatial resolution data and data with different levels of processing (from L1 (Level 1) to L4 (Level 4)); regular data updating on the service; convenience and speed of obtaining satellite data, due to the built-in web service. However, when conducting research based on satellite measurement data, it is important not to limit to one source of information, but to consider all available datasets. This is due, for example, to the use by individual scientists of different algorithms for retrieving the content of pollutants in the atmosphere, to different measurement errors of satellite instruments, their spatial resolution, etc.
Keywords: air pollution, satellite measurements, web services
Full text

References:

  1. Bril A. A., Konstantinova A. M., Loupian E. A., Burtsev M. A., Capabilities of IKI-Monitoring shared use center operation with satellite monitoring–based trace gas component data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 85–95 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-85-95.
  2. Doklad “O sostoyanii okruzhayushchei sredy v gorode Moskve v 2021 godu” (On the state of the environment in Moscow in 2021), Moscow, 2022, 234 p. (in Russian), https://www.mos.ru/upload/content/files/d6fb4810f42661667ce2d1b353dbc5ea/2022_all.pdf.
  3. Ezhegodnik sostoyaniya i zagryazneniya atmosfery v gorodakh na territorii Rossii (Yearbook of the air state and pollution in cities in Russia), Roshydromet, 2022, 254 p. (in Russian), https://www.meteorf.gov.ru/product/infomaterials/ezhegodniki/.
  4. Loupian E. A., Proshin A. A., Bourtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  5. Loupian E. A., Proshin A. A., Bourtsev M. A. et al., Vega-Science system: design features, main capabilities and usage experience, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 9–31 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-9-31.
  6. Morozova A. E., Sizov O. S., Elagin P. O. et al., Integral assessment of atmospheric air quality in the largest cities of Russia based on TROPOMI (Sentinel-5P) data for 2019–2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 23–29 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-23-39.
  7. sostoyanii i ob okhrane okruzhayushchei sredy Rossiiskoi Federatsii v 2022 godu: Gosudarstvennyi doklad (On the status and protection of the environment of the Russian Federation in 2022: State report), Moscow: Ministry of natural resources and environment of the Russian Federation; MSU, 2023, 686 p. (in Russian), https://www.mnr.gov.ru/docs/gosudarstvennye_doklady/.
  8. SanPiN 1.2.3685-21 Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya (Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors to humans), 2021, 988 p. (in Russian), https://rkc56.ru/documents/4538.
  9. Tronin A. A., Kritsuk S. G., Kiselev A. V., Estimation of multiyear changes in nitrogen oxide concentrations over Russia from satellite measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 259–265 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-259-265.
  10. Tronin A. A., Sedeeva M. S., Nerobelov G. M., Vasiliev M. P., Monitoring of nitrogen dioxide content in the atmosphere of cities in Europe and Russia using satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 287–297 (in Russian), DOI: 10.21046/2070-7401-2023-20-1-287-297.
  11. Air pollution, In: Compendium of WHO and other UN guidance on health and environment, 2022 update, Geneva: World Health Organization, 2022, 200 p.
  12. Barkley M. P., Abad G., Kurosu T. P. et al., OMI air-quality monitoring over the Middle East, Atmospheric Chemistry and Physics, 2017, Vol. 17, pp. 4687–4709, https://doi.org/10.5194/acp-17-4687-2017.
  13. Beirle S., Platt U., Wenig M. et al., Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data, Atmospheric Chemistry and Physics, 2004, Vol. 4, pp. 1913–1924, https://doi.org/10.5194/acp-4-1913-2004.
  14. Boersma K. F., Eskes H. J., Brinksma E. J., Error analysis for tropospheric NO2 retrieval from space, J. Geophysical Research, 2004, Vol. 109, Iss. 4, Article D04311, https://doi.org/10.1029/2003JD003962.
  15. Boersma K. F., Eskes H. J., Dirksen R. J. et al., An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmospheric Measurement Techniques, 2011, Vol. 4, pp. 1905–1928, https://doi.org/10.5194/amt-4-1905-2011.
  16. Bovensmann H., Burrows J. P., Buchwitz M. et al., SCIAMACHY — Mission objectives and measurement modes, J. Atmospheric Sciences, 1999, Vol. 56, Iss. 2, pp. 127–150, DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
  17. Burrows J. P., Weber M., Buchwitz M. et al., The Global Ozone Monitoring Experiment (GOME): Mission, instrument concept, and first scientific results, J. Atmospheric Sciences, 1999, Vol. 56, Iss. 2, pp. 151–175, DOI: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.
  18. Callies J., Corpaccioli E., Eisinger M., Hahne A., Lefebvre A., GOME-2-MetOp’s second-generation sensor for operational ozone monitoring, ESA Bull., 2000, Vol. 102, pp. 28–36.
  19. Dang R., Jacob D. J., Shah V. et al., Background nitrogen dioxide (NO2) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires, Atmospheric Chemistry and Physics, 2023, Vol. 23, pp. 6271–6284, https://doi.org/10.5194/acp-23-6271-2023.
  20. Dentener F. J., Crutzen P. J., A global 3D model of the ammonia cycle, J. Atmospheric Chemistry, 1994, Vol. 19, pp. 331–369.
  21. Dirksen R. J., Boersma K. F., Eskes H. J. et al., Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring Instrument: intercomparison, diurnal cycle and trending, J. Geophysical Research, 2011, Vol. 116, Iss. D8, Article D08305, https://doi.org/10.1029/2010JD014943.
  22. Fu D., Kulawik S. S., Miyazaki K. et al., Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation, Atmospheric Measurement Techniques, 2018, Vol. 11, pp. 5587–5605, https://doi.org/10.5194/amt-11-5587-2018.
  23. Georgoulias A. K., Stammes P., Boersma K. F. et al., Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations, Atmospheric Chemistry and Physics, 2019, Vol. 19, pp. 6269–6294, https://doi.org/10.5194/acp-19-6269-2019.
  24. He Y., Uno I., Wang Z. et al., Variations of the increasing trend of tropospheric NO2 over central east China during the past decade, Atmospheric Environment, 2007, Vol. 41, pp. 4865–4876, DOI: 10.1016/j.atmosenv.2007.02.009.
  25. Hilboll A., Richter A., Burrows J. P., Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments, Atmospheric Chemistry and Physics, 2013, Vol. 13, pp. 4145–4169, https://doi.org/10.5194/acp-13-4145-2013.
  26. Huang Z., Kong S., Seo J. et al., Achievements and challenges in improving air quality in China: Analysis of the long-term trends from 2014 to 2022, Environment International, 2024, Vol. 183, Article 108361, https://doi.org/10.1016/j.envint.2023.108361.
  27. Ialongo I., Virta H., Eskes H. et al., Comparison of TROPOMI/Sentinel-5 precursor NO2 observations with ground-based measurements in Helsinki, Atmospheric Measurement Techniques, 2020, Vol. 13, pp. 205–218, https://doi.org/10.5194/amt-13-205-2020.
  28. Inness A., Ribas R., Engelen R., The use of Sentinel-5P air quality data by CAMS, ECMWF Newsletter, 2019, No. 159, pp. 25–30, DOI: 10.21957/ko66ais8yp.
  29. Koelemeijer R. B., Stammes P., Hovenier J. W. et al., A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment, J. Geophysical Research, 2001, Vol. 106, pp. 3475–3490, DOI: 10.1029/2000JD900657.
  30. Lamsal L. N., Duncan B. N., Yoshida Y. et al., U. S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmospheric Environment, 2015, Vol. 110, pp. 130–143, https://doi.org/10.1016/j.atmosenv.2015.03.055.
  31. Lee C., Martin R. V., van Donkelaar A. et al., SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space‐based (SCIAMACHY and OMI) observations, J. Geophysical Research, 2011, Vol. 116, Article D06304, DOI: 10.1029/2010JD014758.
  32. Levelt P. F., van den Oord G. H. J., Dobber M. R. et al., The Ozone Monitoring Instrument, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 4, pp. 1093–1101, DOI: 10.1109/TGRS.2006.872333.
  33. Martin R. V., Satellite remote sensing of surface air quality, Atmospheric Environment, 2008, Vol. 42, pp. 7823–7843, DOI: 10.1016/j.atmosenv.2008.07.018.
  34. Martin R. V., Fiore A. M., Van Donkelaar A., Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions, Geophysical Research Letters, 2004, Vol. 31, Iss. 6, Article L06120, DOI: 10.1029/2004GL019416.
  35. Munro R., Lang R., Klaes D. et al., The GOME-2 instrument on the MetOp series of satellites: instrument design, calibration, and level 1 data processing — an overview, Atmospheric Measurement Techniques, 2016, Vol. 9, pp. 1279–1301, https://doi.org/10.5194/amt-9-1279-2016.
  36. Ozone Monitoring Instrument (OMI) Data User’s Guide, 2017, https://acp.copernicus.org/preprints/acp-2017-487/acp-2017-487.pdf.
  37. Patel F., Using Sentinel-5P to monitor Air Quality changes since the Coronavirus outbreak: a UK Expert View, National Center for Employee Ownership, 2020, https://www.nceo.ac.uk/article/using-sentinel-5p-to-monitor-air-quality-changes-since-the-coronavirus-outbreak-a-uk-expert-view/.
  38. Platt U., Differential optical absorption spectroscopy (DOAS), Air Monitoring by Spectroscopic Techniques, Chemical Analysis Series, 1994, Vol. 127, pp. 27–83.
  39. Polyakov A., Virolainen Y., Nerobelov G. et al., Six years of IKFS-2 global ozone total column measurements, Remote Sensing, 2023, Vol. 15, Article 2481, https://doi.org/10.3390/rs15092481.
  40. Richter A., Begoin M., Hilboll A. et al., An improved NO2 retrieval for the GOME-2 satellite instrument, Atmospheric Measurement Techniques, 2011, Vol. 4, pp. 1147–1159, DOI: 10.5194/amt-4-1147-2011.
  41. Sedeeva M., Tronin A., Nerobelov G. et al., Variation of tropospheric NO2 on the territories of Saint Petersburg and Leningrad Region according to remote sensing data, Izvestiya Atmospheric and Oceanic Physics, 2021, Vol. 57, pp. 669–679, https://doi.org/10.1134/S0001433821200032.
  42. Stammes P., Spectral radiance modelling in the UV-Visible range, Current Problems in Atmospheric Radiation, 2001, pp. 385–388.
  43. United Nations Environment Programme, 2021: Annual Report, 2021, https://www.unep.org/resources/annual-report-2021.
  44. Vandaele A. C., Fayt C., Hendrick F. et al., An intercomparison campaign of ground-based UV-visible measurements of NO2, BrO, and OClO slant columns: Methods of analysis and results for NO2, J. Geophysical Research, 2005, Vol. 110, Iss. 8, Article D08305, 27 p., https://doi.org/10.1029/2004JD005423.
  45. Wallace J. M., Hobbs P. V., Atmospheric science: an introductory survey, 2nd ed., Academic Press, 2006, 504 p.
  46. Zeng J., Vollmer B. E., Ostrenga D. M., Gerasimov I. V., Air quality satellite monitoring by TROPOMI on Sentinel-5P, American Geophysical Union, Fall Meeting, 2018, Article A33J-3280, https://ntrs.nasa.gov/citations/20180008621.
  47. Zhang Q., Boersma K. F., Zhao B. et al., Quantifying daily NOx and CO2 emissions from Wuhan using satellite observations from TROPOMI and OCO-2, Atmospheric Chemistry and Physics, 2023, Vol. 23, pp. 551–563, https://doi.org/10.5194/acp-23-551-2023.