ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 233-249

Assessment of damage to Russian forests by fires in the XXI century based on analysis of fire intensity using MODIS instrument

E.A. Loupian 1 , D.V. Lozin 1 , S.A. Bartalev 1 , I.V. Balashov 1 , F.V. Stytsenko 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 25.11.2024
DOI: 10.21046/2070-7401-2024-21-6-233-249
The paper analyzes the specifics of forest fire damages in Russia in the XXI century. The methods of forest damage and forest fires affected areas assessment based on combustion intensity information are briefly described. The main features of the forest fire and post-fire damage database generated based on MODIS observations for the period from 2001 to 2024 are discussed. Key specifics of post-fire forest damage dynamics observed in the XXI century in the Russian Federation are presented and analyzed. It is shown, that there has been a significant increase in fire mortality (more than twofold) during the period of study. This increase is mostly explained by action of fires in coniferous-deciduous forests. It is also noted, that the percentage of forests severely damaged by fires (average condition category 5) has increased significantly since the beginning of the XXI century. All this allows us to conclude that there is a significant increasing trend in damage from forest fires in the territory of the Russian Federation in the XXI century, despite the absence of such a trend in areas affected by fires. The work also presents and analyzes seasonal dynamics of damage to forest cover by fires. In particular, it is shown that summer months account for more than 80 % of areas of forest damage associated with fires, with about 50 % of such areas occurring in July.
Keywords: remote sensing, forest fires, forest fire monitoring, FRP, forest damage rate, forest fire seasonal mortality index
Full text

References:

  1. Abushenko N. A., Bartalev S. A., Belaev A. I., Ershov D. V., Zakharov M. Yu., Loupian E. A., Korovin G. N., Koshelev V. V., Krasheninnikova Yu. S., Mazurov A. A., Min’ko N. P., Nazirov R. R., Semenov S. M., Tashchilin S. A., Flitman E. V., Shchetinskii V. E., Experience and prospects for organizing operational satellite monitoring of Russian territory for the purposes of forest fire protection services, Issledovanie Zemli iz kosmosa, 1998, No. 3, pp. 89–95 (in Russian).
  2. Bartalev S. A., Stytsenko F. V., An assessment of the forest stands destruction by fires based on the remote sensing data on a seasonal distribution of burnt areas, Lesovedenie, 2021, No. 2, pp. 115–122 (in Russian), DOI: 10.31857/S0024114821020029.
  3. Bartalev S. A., Ershov D. V., Korovin G. N., Kotel’nikov R. V., Loupian E. A., Shchetinskii V. E., Forest Fire Satellite Monitoring Information System of Russian Federal Forestry Agency (status and development prospects), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Iss. 5, Vol. 2, pp. 419–429 (in Russian).
  4. Bartalev S. A., Egorov V. A., Ershov D. V., Isaev A. S., Loupian E. A., Plotnikov D. E., Uvarov I. A., Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 285–302 (in Russian).
  5. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Russia’s forest fire damage estimation, Lesovedenie, 2015, No. 2, pp. 83–94 (in Russian).
  6. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
  7. Buryak L. V., Sukhinin A. I., Kalenskaya O. P., Ponomarev E. I., Consequences of fires events in the ribbon-like pineries of the South Siberia, Sibirskii ekologicheskii zhurnal, 2011, No. 3, pp. 331–339 (in Russian).
  8. Galeev A. A., Proshin A. A., Ershov D. V., Tashchilin S. A., Mazurov A. A., Loupian E. A., Forest fires satellite monitoring data storage management, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Iss. 2, Vol. 2, pp. 367–371 (in Russian).
  9. Kobets D. A., Balashov I. V., Danilov I. D., Loupian E. A., Sychugov I. G., Tolpin V. A., The BI technologies to create analysis tools for satellite remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 4, pp. 17–27 (in Russian).
  10. Korovin G. N., Andreev N. A., Aviatsionnaya okhrana lesov (Aerial safeguarding of forest), Moscow: Agropromizdat, 1988, 223 p. (in Russian).
  11. Loupian E. A., Bartalev S. A., Balashov I. V. et al., Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-158-175.
  12. Loupian E. A., Proshin A. A., Burtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  13. Loupian E. A., Stytsenko F. V., Senko K. S. et al., Burnt area assessment using MODIS Collection 6 active fire data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 178–192 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-178-192.
  14. Loupian E. A., Lozin D. V., Balashov I. V. et al., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 217–232 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-217-232.
  15. Ponomarev E. I., Kharuk V. I., Wildfire occurrence in forests of the Altai-Sayan region under current climate changes, Sibirskii ekologicheskii zhurnal, 2016, No. 1, pp. 38–46 (in Russian), DOI: 10.15372/SEJ20160104.
  16. Ponomarev E. I., Shvetsov E. G., Satellite detection of forest fires and geoinformation methods for calibrating of the result, Issledovanie Zemli iz kosmosa, 2015, No. 1, pp. 84–91 (in Russian), DOI: 10.7868/S0205961415010054.
  17. Ponomarev E. I., Kharuk V. I., Yakimov N. D. (2017a), Current results and perspectives of wildfire satellite monitoring in Siberia, Sibirskii lesnoi zhurnal, 2017, No. 5, pp. 25–36 (in Russian), DOI: 10.15372/SJFS2017050.
  18. Ponomarev E. I., Shvetsov E. G., Usataya Yu. O. (2017b), Registration of wildfire energy characteristics in Siberian forests using remote sensing, Issledovanie Zemli iz kosmosa, 2017, No. 4, pp. 3–11 (in Russian), DOI: 10.7868/S0205961417040017.
  19. Rukovodstvo po provedeniyu sanitarno-ozdorovitel’nykh meropriyatii, utverzhdennoe prikazom Rosleskhoza No. 523 ot 29.12.07 (Guidelines for the implementation of sanitary and recreational activities, approved by order of Rosleskhoz No. 523 dated 12.29.07), 2007.
  20. Stytsenko F. V., Bartalev S. A., Egorov V. A., Loupian E. A., Post-fire forest tree mortality assessment method using MODIS satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 254–266 (in Russian).
  21. Stytsenko F. V., Bartalev S. A., Ivanova A. A., Forest burnt area assessment possibilities in regions of Russia based on active fires detection by satellites, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 289–298 (in Russian), DOI: 10.21046/2070-7401-2016-13-6-289-298.
  22. Shvidenko A. Z., Shchepashchenko D. G., Climate change and forest fires in Russia, Lesovedenie, 2013, No. 5, pp. 50–61 (in Russian).
  23. Balzter H., George C. T., Rowland C. S., Gerard F., McCallum I., Shvidenko A., Schmullius C., Forest fires in Central Siberia and their impact on emissions of greenhouse gasses, Proc. Remote Sensing and Photogrammetric Soc., 2004.
  24. Barnaba F., Angelini F., Curci G., Gobbi G. P., An important fingerprint of wildfires on the European aerosol load, Atmospheric Chemistry and Physics, 2011, Vol. 11, Iss. 20, pp. 10487–10501, DOI: 10.5194/acp-11-10487-2011.
  25. Boschetti L., Roy D. P., Strategies for the fusion of satellite fire radiative power with burned area data for fire radiative energy derivation, J. Geophysical Research: Atmospheres, 2009, Vol. 114, Article D20302, DOI: 10.1029/2008JD011645.
  26. Giglio L., Descloitresa J., Justice C. O., Kaufman Y. J., An enhanced contextual fire detection algorithm for MODIS, Remote Sensing of Environment, 2003, Vol. 87, pp. 273–282, DOI: 10.1016/S0034-4257(03)00184-6.
  27. Giglio L., Schroeder W., Justice C. O., The Collection 6 MODIS active fire detection algorithm and fire products, 2016, Remote Sensing of Environment, V. 178, pp. 31–41, DOI: https://doi.org/10.1016/j.rse.2016.02.054.
  28. Hansen M. C., Potapov P. V., Moore R. et al., High-resolution global maps of 21st-century forest cover change, Science, 2013, Vol. 342, Iss. 6160, pp. 850–853, DOI: 10.1126/science.1244693.
  29. Heward H., Smith A. M.S., Roy D. P. et al., Is burn severity related to fire intensity? Observations from landscape scale remote sensing, Intern. J. Wildland Fire, 2013, Vol. 22, No. 7, pp. 910–918, DOI: 10.1071/WF12087.
  30. Hua L., Shao G., The progress of operational forest fire monitoring with infrared remote sensing, J. Forestry Research, 2017, Vol. 28, No. 2, pp. 215–229, DOI: 10.1007/s11676-016-0361-8.
  31. Ichoku C., Kaufman Y. J., A method to derive smoke emission rates from MODIS fire radiative energy measurements, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 11, pp. 2636–2649, DOI: 10.1109/TGRS.2005.857328.
  32. Kaufman Y. J., Justice C., Flynn L. et al., Monitoring global fires from EOS-MODIS, J. Geophysical Research: Atmospheres, 1998, Vol. 103, pp. 32215–32239, DOI: 10.1029/98JD01644.
  33. Kumar S. S., Roy D. P., Boschetti L., Kremens R., Exploiting the power law distribution properties of satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite observations, J. Geophysical Research: Atmospheres, 2011, Vol. 116, Article D19303, DOI: 10.1029/2011JD015676.
  34. Li F., Zhang X., Kondragunta S. et al., Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications, Remote Sensing of Environment, 2022, Vol. 281, Article 113237, DOI: 10.1016/j.rse.2022.113237.
  35. Morgan P, Hardy C. C., Swetnam T. W. et al., Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns, Intern. J. Wildland Fire, 2001, Vol. 10, No. 4, pp. 329–342, DOI: 10.1071/WF01032.
  36. Mota B., Wooster M. J., A new top-down approach for directly estimating biomass burning emissions and fuel consumption rates and totals from geostationary satellite fire radiative power (FRP), Remote Sensing of Environment, 2018, Vol. 206, pp. 45–62, DOI: 10.1016/j.rse.2017.12.016.
  37. Mottram G. N., Wooster M., Balzter H., George C., Gerrard F., Beisley J., The use of MODIS-derived Fire Radiative Power to characterise Siberian boreal forest fires, Proc. 31 st Intern. Symp. Remote Sensing of Environment, 2005, 4 p.
  38. Riggan P. J., Tissell R. G., Lockwood R. N. et al., Remote measurement of energy and carbon flux from wildfires in Brazil, Ecological Applications, 2004, Vol. 14, Iss. 3, pp. 855–872, DOI: 10.1890/02-5162.
  39. Roy D. P., Boschetti L., Justice C. O., Ju J., The Collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product, Remote Sensing of Environment, 2008, Vol. 112, pp. 3690–3707, DOI: 10.1016/j.rse.2008.05.013.
  40. Ryan K. C., Dynamic interactions between forest structure and fire behavior in boreal ecosystems, Silva Fennica, 2002, Vol. 36, No. 1, pp. 13–39, DOI: 10.14214/sf.548.
  41. Sofiev M., Vankevich R., Lotjonen M. et al., An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting, Atmospheric Chemistry and Physics, 2009, Vol. 9, Iss. 18, pp. 6833–6847, DOI: 10.5194/acp-9-6833-2009.
  42. Wooster M. J., Zhukov B., Oertel D., Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products, Remote Sensing of Environment, 2003, No. 86, pp. 83–107, DOI: 10.1016/S0034-4257(03)00070-1.
  43. Wooster M., Xu W., Nightingale T., Sentinel-3 SLSTR active fire detection and FRP product: pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets, Remote Sensing of Environment, 2012, No. 120, pp. 236–254, DOI: 10.1016/j.rse.2011.09.033.
  44. Zheng Y., Zhang G., Tan S., Feng L., Research on progress of forest fire monitoring with satellite remote sensing, Agricultural and Rural Studies, 2023, Vol. 1, No. 2, Article 0008, https://doi.org/10.59978/ar01020008.