ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 267-283

Reproduction of the largest Earth lakes surface temperature by the LAKE model: Automatic calibration system based on MODIS data

V.M. Stepanenko 1, 2 , I.A. Repina 3, 1, 4 , A.I. Medvedev 1, 2 , V.A. Romanenko 3, 1 
1 Research Computing Center of Lomonosov Moscow State University, Moscow, Russia
2 Hydrometeorological Research Center of the Russian Federation, Moscow, Russia
3 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
4 Maykop State Technological University, Maykop, Russia
Accepted: 07.10.2024
DOI: 10.21046/2070-7401-2024-21-6-267-283
Due to their computational efficiency, one-dimensional models of land reservoirs are used in a wide range of applications from studies of thermohydrodynamics and lake ecology to weather forecasting and assessment of future climate change. This paper presents a system for optimizing well-known one-dimensional LAKE model in terms of reproducing surface temperature using meteorological variables from the ERA5 (ECMWF Reanalysis v5) reanalysis and satellite data for lakes Baikal, Balkhash, Great Bear, Superior, Victoria, Winnipeg, Ladoga, Onega, Tanganyika. Optimization of the background diffusion coefficient (thermal diffusivity) and the absorption coefficient of photosynthetically active radiation in the water column is carried out by the ROPE (RObust Parameter Estimation) method, implemented in the SPOTPY (Statistical Parameter Optimization Tool for PYthon) library. The LAKE reservoir model satisfactorily reproduces the time course of average monthly surface temperature, with standard deviation in the range of 1–2 °C after parameter calibration. The coefficients of absorption and background diffusion regulate the vertical distribution of heat in a reservoir; this leads to the effect of “equifinality”, i.e. non-uniqueness of the optimal combination of these parameters. Calibration of the selected parameters makes it possible to effectively reduce the annual amplitude of surface temperature; at the same time, the problem of the model underestimating the surface temperature in summer, caused by the delayed melting of the ice cover in the model, is not solved by varying these parameters. The model systematically overestimates the surface temperature of tropical lakes Victoria and Tanganyika by 2–3 °C. The prospects for the development of this work lie in the elaboration of new physically correct parameterizations of the vertical transfer of momentum and scalar quantities in the meta- and hypolimnion of water bodies. In addition, in the LAKE model it is advisable to revise the model of radiation transfer in snow and ice cover and include the parameters of this model in the calibration system.
Keywords: lakes, surface temperature, MODIS, one-dimensional thermohydrodynamics model, LAKE, optimization, numerical weather forecast
Full text

References:

  1. Vazaeva N. V., Repina I. A., Shestakova A. A., Ganbat G., Mesoscale vortex over Uvs-Nuur: analysis and numerical simulation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 306–317 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-306-317.
  2. Gladskikh D. S., Stepanenko V. M., Mortikov E. V., The effect of the horizontal dimensions of inland water bodies on the thickness of the upper mixed layer, Water Resources, 2021, Vol. 48, No. 2, pp. 226–234, DOI: 10.1134/S0097807821020068.
  3. Stepanenko V. M., Miranda P. M., Lykosov V. N., Numerical simulation of mesoscale interaction of the atmosphere and hydrologically heterogeneous land, Vychislitel’nye tekhnologii, 2007, Vol. 11, No. 3, pp. 118–127 (in Russian).
  4. Stepanenko V. M., Machul’skaya E. E., Glagolev M. V., Lykossov V. N., Numerical modeling of methane emissions from lakes in the permafrost zone, Izvestiya, Atmospheric and Oceanic Physics, 2011, Vol. 47, No. 2, pp. 252–264, DOI: 10.1134/S0001433811020113.
  5. Stepanenko V. M., Repina I. A., Ganbat G., Davaa G., Numerical simulation of ice cover of saline lakes, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 1, pp. 129–138, DOI: 10.1134/S0001433819010092.
  6. Stepanenko V. M., Grechushnikova M. G., Repina I. A., Numerical simulation of methane emission from an artificial reservoir, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 6, pp. 649–659, DOI: 10.1134/S0001433822060159.
  7. Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A., Analysis of changes in the ice cover of freshwater lakes by SMOS data, Izvestiya, Atmospheric and Oceanic Physics, 2018, No. 9, pp. 1135–1140, DOI: 10.1134/S0001433818090384.
  8. Aguilar-Lome J., Soca-Flores R., Gómez D., Evaluation of the Lake Titicaca’s surface water temperature using LST MODIS time series (2000–2020), J. South American Earth Sciences, 2021, Vol. 112, Article 103609, DOI: 10.1016/j.jsames.2021.103609.
  9. Balsamo G., Dutra E., Stepanenko V. M. et al., Deriving an effective lake depth from satellite lake surface temperature data: a feasibility study with MODIS data, Boreal Environment Research, 2010, Vol. 15, pp. 178–190.
  10. Balsamo G., Salgado R., Dutra E. et al., On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model, Tellus A, 2012, Vol. 64, Article 15829, DOI: 10.3402/tellusa.v64i0.15829.
  11. Bárdossy A., Singh S. K., Robust estimation of hydrological model parameters, Hydrology and Earth System Sciences, 2008, Vol. 12, No. 6, pp. 1273–1283, DOI: 10.5194/hessd-5-1641-2008.
  12. Barthold F. E., Kristovich D. A. R., Observations of the cross-lake cloud and snow evolution in a lake-effect snow event, Monthly Weather Review, 2011, Vol. 139, No. 8, pp. 2386–2398, DOI: 10.1175/MWR-D-10-05001.1.
  13. Bogomolov V., Stepanenko V., Volodin E., Development of lake parametrization in the INMCM climate model, IOP Conf. Ser.: Earth and Environmental Science, 2016, Vol. 48, No. 1, Article 012005, DOI: 10.1088/1755-1315/48/1/012005.
  14. Cheng Y., Shen L., Teng M. et al., How to use lake breeze circulations to improve urban natural ventilation: A case study in a typical inland multi-lake megacity, Landscape and Urban Planning, 2023, Vol. 230, Article 104628, DOI: 10.1016/j.landurbplan.2022.104628.
  15. Choulga M., Kourzeneva E., Zakharova E., Doganovsky A., Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling, Tellus A, 2014, Vol. 66, Article 21295, DOI: 10.3402/tellusa.v66.21295.
  16. Clark J. A., Jafarov E. E., Tape K. D. et al., Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model, Geoscientific Model Development, 2022, Vol. 15, No. 19, pp. 7421–7448, DOI: 10.5194/gmd-15-7421-2022.
  17. Comer N. T., McKendry I. G., Observations and numerical modelling of Lake Ontario breezes, Atmosphere-Ocean, 1993, Vol. 31, No. 4, pp. 481–499, DOI: 10.1080/07055900.1993.9649482.
  18. Eerola K., Kourzeneva E., Pour H. Kh., Duguay C., Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation — a case study using a limited area model, Tellus A, 2014, Vol. 66, Article 23929, DOI: 10.3402/tellusa.v66.23929.
  19. Fan C., Liu K., Luo S. et al., Detection of surface water temperature variations of Mongolian lakes benefiting from the spatially and temporally gap-filled MODIS data, Intern. J. Applied Earth Observation and Geoinformation, 2022, Vol. 114, Article 103073, DOI: 10.1016/j.jag.2022.103073.
  20. Forbes G. S., Merritt J. H., Mesoscale vortices over the Great Lakes in wintertime, Monthly Weather Review, 1984, Vol. 112, No. 2, pp. 377–381, https://doi.org/10.1175/1520-0493(1984)112<0377:MVOTGL>2.0.CO;2.
  21. Fujisaki-Manome A., Mann G. E., Anderson E. J. et al., Improvements to lake-effect snow forecasts using a one-way air–lake model coupling approach, J. Hydrometeorology, 2020, Vol. 21, No. 12, pp. 2813–2828, DOI: 10.1175/JHM-D-20-0079.1.
  22. Gaudard A., Schwefel R., Vinnå L. R. et al., Optimizing the parameterization of deep mixing and internal seiches in one-dimensional hydrodynamic models: A case study with Simstrat v1.3, Geoscientific Model Development, 2017, Vol. 10, No. 9, pp. 3411–3423, DOI: 10.5194/gmd-10-3411-2017.
  23. Gaudard A., Vinnå L. R., Bärenbold F. et al., Toward an open access to high-frequency lake modeling and statistics data for scientists and practitioners — the case of Swiss lakes using Simstrat v2.1, Geoscientific Model Development, 2019, Vol. 12, No. 9, pp. 3955–3974, DOI: 10.5194/gmd-12-3955-2019.
  24. Golosov S., Zverev I., Shipunova E., Terzhevik A., Modified parameterization of the vertical water temperature profile in the FLake model, Tellus A, 2018, Vol. 70, Article 1441247, DOI: 10.1080/16000870.2018.1441247.
  25. Golub M., Thiery W., Marcé R. et al., A framework for ensemble modelling of climate change impacts on lakes worldwide: The ISIMIP Lake Sector, Geoscientific Model Development, 2022, Vol. 15, No. 11, pp. 4597–4623, DOI: 10.5194/gmd-15-4597-2022.
  26. Guseva S., Bleninger T., Jöhnk K. et al., Multimodel simulation of vertical gas transfer in a temperate lake, Hydrology and Earth System Sciences, 2020, Vol. 24, No. 2, pp. 697–715, DOI: 10.5194/hess-24-697-2020.
  27. Håkanson L., Models to predict Secchi depth in small glacial lakes, Aquatic Sciences, 1995, Vol. 57, No. 1, pp. 31–53, DOI: 10.1007/BF00878025.
  28. Heiskanen J. J., Mammarella I., Ojala A. et al., Effects of water clarity on lake stratification and lake‐atmosphere heat exchange, J. Geophysical Research: Atmospheres, 2015, Vol. 120, No. 15, pp. 7412–7428, DOI: 10.1002/2014JD022938.
  29. Henderson-Sellers B., New formulation of eddy diffusion thermocline models, Applied Mathematical Modelling, 1985, Vol. 9, pp. 441–446, DOI: 10.1016/0307-904X(85)90110-6.
  30. Hersbach H., Bell B., Berrisford P. et al., The ERA5 global reanalysis, Quarterly J. Royal Meteorological Soc., 2020, Vol. 146, No. 730, pp. 1999–2049, DOI: 10.1002/qj.3803.
  31. Hipsey M. R., Bruce L. C., Boon C. et al., A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON), Geoscientific Model Development, 2019, Vol. 12, No. 1, pp. 473–523, DOI: 10.5194/gmd-12-473-2019.
  32. Hosoda K., Murakami H., Sakaida F., Kawamura H., Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific, J. Oceanography, 2007, Vol. 63, Iss. 2, pp. 267–280, DOI: 10.1007/s10872-007-0027-4.
  33. Houska T., Kraft Ph., Chamorro-Chavez A., Breuer L., SPOTting model parameters using a ready-made python package, PLoS ONE, 2015, Vol. 10, No. 12, Article e0145180, DOI: 10.1371/journal.pone.0145180.
  34. Iakunin M., Stepanenko V., Salgado R. et al., Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in Western Europe using the LAKE 2.0 model, Geoscientific Model Development, 2020, Vol. 13, No. 8, pp. 3475–3488, DOI: 10.5194/gmd-13-3475-2020.
  35. Justice C., Townshend J., Vermote E. et al., An overview of MODIS Land data processing and product status, Remote Sensing of Environment, 2002, Vol. 83, pp. 3–15, DOI: 10.1016/S0034-4257(02)00084-6.
  36. Ke L., Song C., Remotely sensed surface temperature variation of an inland saline lake over the central Qinghai–Tibet Plateau, ISPRS J. Photogrammetry and Remote Sensing, 2014, Vol. 98, pp. 157–167, DOI: 10.1016/j.isprsjprs.2014.09.007.
  37. Kraemer B. M., Mehner T., Adrian R., Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes, Scientific Reports, 2017, Vol. 7, Article 10762, DOI: 10.1038/s41598-017-11167-3.
  38. Layden A., MacCallum S. N., Merchant C. J., Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake v.1), Geoscientific Model Development, 2016, Vol. 9, No. 6, pp. 2167–2189, DOI: 10.5194/gmd-9-2167-2016.
  39. Le Moigne P., Colin J., Decharme B., Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model, Tellus A, 2016, Vol. 68, Article 31274, DOI: 10.3402/tellusa.v68.31274.
  40. Lehner B., Döll P., Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrology, 2004, Vol. 296, No. 1–4, pp. 1–22, DOI: 10.1016/j.jhydrol.2004.03.028.
  41. Lehner B., Anand M., Fluet-Chouinard E. et al., Mapping the world’s inland surface waters: An update to the Global Lakes and Wetlands Database (GLWD v2), Earth System Science Data Discussions [preprint], 2024, DOI: 10.5194/essd-2024-204.
  42. Ljungemyr P., Gustafsson N., Omstedt A., Parameterization of lake thermodynamics in a high-resolution weather forecasting model, Tellus A, 1996, Vol. 48, pp. 608–621, DOI: 10.1034/j.1600-0870.1996.t01-4-00002.x.
  43. MacCallum S. N., Merchant C. J., Surface water temperature observations of large lakes by optimal estimation, Canadian J. Remote Sensing, 2012, Vol. 38, Iss. 1, pp. 25–45, DOI: 10.5589/m12-010.
  44. Mao K. B., Ma Y., Tan X. A. et al., Global surface temperature change analysis based on MODIS data in recent twelve years, Advances in Space Research, 2017, Vol. 59, No. 2, pp. 503–512, DOI: 10.1016/j.asr.2016.11.007.
  45. Martynov A., Sushama L., Laprise R. et al., Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America, Tellus A, 2012, Vol. 64, Article 16226, DOI: 10.3402/tellusa.v64i0.16226.
  46. Mironov D., Heise E., Kourzeneva E. et al., Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO, Boreal Environment Research, 2010, Vol. 15, pp. 218–230.
  47. Moukomla S., Blanken P., Remote sensing of the North American Laurentian Great Lakes’ surface temperature, Remote Sensing, 2016, Vol. 8, Iss. 4, Article 286, DOI: 10.3390/rs8040286.
  48. Phillips R. C., Saylor J. R., Kaye N. B., Gibert J. M., A multi-lake study of seasonal variation in lake surface evaporation using MODIS satellite-derived surface temperature, Limnology, 2016, Vol. 17, Iss. 3, pp. 273–289, DOI: 10.1007/s10201-016-0481-z.
  49. Poole H. H., Atkins W. R. G., Photo-electric measurements of submarine illumination throughout the year, J. Marine Biological Association of the United Kingdom, 1929, Vol. 16, No. 1, pp. 297–324, DOI: 10.1017/S0025315400029829.
  50. Rooney G. G., Bornemann J. F., The performance of FLake in the Met Office Unified Model, Tellus A, 2013, Vol. 65, Article 21363, DOI: 10.3402/tellusa.v65i0.21363.
  51. Sharma S., Gray D. K., Read J. S. et al., A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009, Scientific Data, 2015, Vol. 2, Article 150008, DOI: 10.1038/sdata.2015.8.
  52. Sobrino J. A., García-Monteiro S., Julien Y., An analysis of the lake surface water temperature evolution of the world’s largest lakes during the years 2003–2020 using MODIS data, Recent Advances in Remote Sensing, 2024, https://doi.org/10.62880/rars240001.
  53. Stepanenko V. M., Martynov A., Goyette S., Fang X., Perroud M., Mironov D., First steps of a Lake Model Intercomparison Project, Boreal Environment Research, 2010, Vol. 15, pp. 191–202.
  54. Stepanenko V. M., Martynov A., Jöhnk K. D. et al., A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake, Geoscientific Model Development, 2013, Vol. 6, No. 4, pp. 1337–1352, DOI: 10.5194/gmd-6-1337-2013.
  55. Stepanenko V., Jöhnk K. D., Machulskaya E. et al., Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models, Tellus A, 2014, Vol. 66, Article 21389, DOI: 10.3402/tellusa.v66.21389.
  56. Stepanenko V., Mammarella I., Ojala A. et al., LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geoscientific Model Development, 2016, Vol. 9, No. 5, pp. 1977–2006, DOI: 10.5194/gmd-9-1977-2016.
  57. Stepanenko V. M., Repina I. A., Artamonov A. Y. et al., Mid-depth temperature maximum in an estuarine lake, Environmental Research Letters, 2018, Vol. 13, No. 3, Article 035006, DOI: 10.1088/1748-9326/aaad75.
  58. Stepanenko V. M., Valerio G., Pilotti M., Horizontal pressure gradient parameterization for one-dimensional lake models, J. Advances in Modeling Earth Systems, 2020, Article e21063, DOI: 10.1029/2019MS001906.
  59. Subin Z. M., Murphy L. N., Li F. et al., Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1), Tellus A, 2012, Vol. 64, Article 15639, DOI: 10.3402/tellusa.v64i0.15639.
  60. Sun L., Ling T., Xu M., Lee X., improving a multilevel turbulence closure model for a shallow lake in comparison with other 1‐D models, J. Advances in Modeling Earth Systems, 2020, Vol. 12, No. 7, Article e2019MS001971, DOI: 10.1029/2019MS001971.
  61. Thiery W., Stepanenko V. M., Fang X. et al., LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models, Tellus A, 2014, Vol. 66, Article 21390, DOI: 10.3402/tellusa.v66.21390.
  62. Thiery W., Davin E. L., Seneviratne S. I. et al., Hazardous thunderstorm intensification over Lake Victoria, Nature Communications, 2016, Vol. 7, Article 12786, DOI: 10.1038/ncomms12786.
  63. Toptunova O., Choulga M., Kurzeneva E., Status and progress in global lake database developments, Advances in Science and Research, 2019, Vol. 16, pp. 57–61, DOI: 10.5194/asr-16-57-2019.
  64. Turuncoglu U. U., Elguindi N., Giorgi F. et al., Development and validation of a regional coupled atmosphere lake model for the Caspian Sea Basin, Climate Dynamics, 2013, Vol. 41, No. 7–8, pp. 1731–1748, DOI: 10.1007/s00382-012-1623-6.
  65. Xie C., Zhang X., Zhuang L. et al., Analysis of surface temperature variation of lakes in China using MODIS land surface temperature data, Scientific Reports, 2022, Vol. 12, No. 1, Article 2415, DOI: 10.1038/s41598-022-06363-9.
  66. Zhang G., Yao T., Xie H. et al., Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data, J. Geophysical Research: Atmospheres, 2014, Vol. 119, No. 14, pp. 8552–8567, DOI: 10.1002/2014JD021615.
  67. Zhang Q., Jin J., Wang X. et al., Improving lake mixing process simulations in the Community Land Model by using K-profile parameterization, Hydrology and Earth System Sciences, 2019, Vol. 23, No. 12, pp. 4969–4982, DOI: 10.5194/hess-23-4969-2019.
  68. Zhong Y., Notaro M., Vavrus S. J., Spatially variable warming of the Laurentian Great Lakes: An interaction of bathymetry and climate, Climate Dynamics, 2019, Vol. 52, No. 9–10, pp. 5833–5848, DOI: 10.1007/s00382-018-4481-z.