ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 387-396

New possibilities of estimating the upper cloud boundary height on the basis of synchronous observations from Arktika-M highly elliptical orbit satellites and Himawari geostationary satellites

A.A. Bril 1 , A.I. Andreev 2 , M.A. Burtsev 1 , E.E. Volkova 1 , E.A. Loupian 1 , E.I. Kholodov 2 
1 Space Research Institute RAS, Moscow, Russia
2 Far Eastern Center of SRC "Planeta", Khabarovsk, Russia
Accepted: 29.10.2024
DOI: 10.21046/2070-7401-2024-21-5-387-396
Commissioning in 2021 of the highly elliptical orbit Arktika-M satellite system opened up new opportunities to observe cloud cover in northern latitudes with high frequency (every 15 minutes). This potentially provides synchronous observations of cloud cover by both geostationary and highly elliptical orbit satellites, i.e., another source of information for using direct methods to determine cloud cover heights has become available. The paper presents the first results of work on the development of a method for automated regular (at least once every 30 minutes) reconstruction of the upper cloud boundary height fields based on data from Arktika-M and geostationary Himawari-8/9 satellites. Problems arising in this process are discussed and first results of the accuracy assessment of the developed method are presented. It is shown that even the current quality of data provided by the Arktika-M system makes it possible to obtain estimates of cloud cover heights comparable to those obtained from satellite data by other methods. We also discuss the possibility of implementing the technology of automated regular (at least once every 30 minutes) reconstruction of cloud top height fields from geostationary and highly elliptical orbit satellite data.
Keywords: stereopair, upper cloud boundary height, Arktika-M, Himawari
Full text

References:

  1. Asmus V. V., Milekhin O. E., Kramareva L. S. et al., Arktika-M: The world’s first highly elliptical orbit hydrometeorological space system, Russian Meteorology and Hydrology, 2021, Vol. 46, No. 12, pp. 805–816, DOI: doi.org/10.3103/S1068373921120013.
  2. Girina O. A., Loupian E. A., Kramareva L. S. et al., The information system “Remote monitoring of Kamchatka and Kuril Islands volcanic activity“ (VolSatView): Capabilities and Experience, Information Technologies in Remote Sensing of the Earth — RORSE 2018, IKI RAS, 2019, pp. 359–366 (in Russian), DOI: 10.21046/rorse2018.359.
  3. Loupian E. A., Proshin A. A., Burtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  4. Argyriou V., Petrou M., Photometric stereo: an overview, Advances in Imaging and Electron Physics, 2009, Vol. 156, pp. 1–54, DOI: https://doi.org/10.1016/S1076-5670(08)01401-8.
  5. Bessho K., Date K., Hayashi M. et al., An introduction to Himawari-8/9 — Japan’s new-generation geostationary meteorological satellites, J. Meteorological Society of Japan. Ser. II, 2016, Vol. 94, Issue 2, pp. 151–183, https://doi:10.2151/jmsj.2016-009.
  6. Coppo P., Ricciarelli B., Brandani F. et al., SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space, J. Modern Optics, 2010, Vol. 57, Issue 18, pp. 1815–1830, https://doi.org/10.1080/09500340.2010.503010.
  7. Hasler A. F., Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences, Bull. American Meteorological Society, 1981, Vol. 62, Issue 2, pp. 194–212, https://doi.org/10.1175/1520-0477(1981)062%3C0194:SOFGSA%3E2.0.CO;2.
  8. Hasler A. F., Strong J., Woodward R. H., Pierce H., Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure, J. Applied Meteorology and Climatology, 1991, Vol. 30, No. 3, pp. 257–281, https://doi.org/10.1175/1520-0450(1991)030%3C0257:AAOSSI%3E2.0.CO;2.
  9. Horn B. K. P., Schunck B. G., Determining optical flow, Artificial Intelligence, 1981, Vol. 17, Issue 1–3, pp. 185–203, https://doi.org/10.1016/0004-3702(81)90024-2.
  10. Huo J., Lu D., Duan S. et al., Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar, Atmospheric Measurement Techniques, 2020, Vol. 13, No. 11, pp. 1–11, https://doi.org/ 10.5194/amt-13-1-2020.
  11. Lowe D. G., Distinctive image features from scale-invariant keypoints, Intern. J. Computer Vision, 2004, Vol. 60, pp. 91–110, https://doi.org/10.1023/B%3AVISI.0000029664.99615.94.
  12. Merucci L., Zakšek K., Carboni E. et al., Stereoscopic estimation of volcanic ash cloud-top height from two geostationary satellites, Remote Sensing, 2016, Vol. 8, Issue 3, Article 206. https://doi.org/10.3390/rs8030206.
  13. Mouri K., Suzue H., Yoshida R., Izumi T., Algorithm theoretical basis document for cloud top height product, Meteorological Satellite Center Technical Note, 2016, No. 61., pp. 33–42.
  14. Scheffler D., Hollstein A., Diedrich H. et al., AROSICS: An automated and robust open-source image co-registration software for multi-sensor satellite data, Remote Sensing, 2017, Vol. 9, Issue 7, Article 676, https://doi.org/10.3390/rs9070676.
  15. Tareen S. A. K., Saleem Z., A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK, 2018 Intern. Conf. Computing, mathematics and engineering technologies (iCoMET). IEEE, 2018, pp. 1–10, http://dx.doi.org/10.1109/ICOMET.2018.8346440.
  16. Yamamoto Y., Ichii K., Higuchi A., Takenaka H., Geolocation accuracy assessment of Himawari-8/AHI imagery for application to terrestrial monitoring, Remote Sensing, 2020, Vol. 12, Issue 9, Article 1372, https://doi.org/10.3390/rs12091372.