ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 306-320

Using satellite altimetry data to assess the conditions for observation in radar images of outflows from Kaliningrad and Curonian lagoons

M.V. Vrublevsky 1 , O.Yu. Lavrova 1 , M.I. Mityagina 1 , A.N. Yakusheva 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 12.10.2024
DOI: 10.21046/2070-7401-2024-21-5-306-320
Outflows from bays such as Kaliningrad and Curonian ones have a significant impact on the hydrochemical and hydrobiological processes in the Baltic Sea. Therefore, outflow is an important object of observation both using traditional hydrological measurements and Earth remote sensing data. Observations of runoff using optical sensors have become widespread, but the observation data can be very sparse in time due to cloudiness. Radar images can be used to supplement these observations. To do this, it is necessary to understand the mechanisms of outflow manifestation in them and conditions of their occurrence. One of these conditions is currents that arise between the bay and the sea as a result of the difference in water levels. The aim of the article is to develop a method for assessing the conditions favorable for observing outflow in radar images based on satellite radar altimetry data of the studied bays and the Baltic Sea. The paper presents the results of a correlation study of outflow observations and the ratio of bay and sea water levels, and also provides an assessment of the applicability of the proposed methodology and an analysis of the possibility of its extension by using the discharge data of rivers flowing into the studied bays.
Keywords: satellite altimetry, outflow from the bay, SAR-C Sentinel-1, Sentinel-3, Curonian Lagoon, Kaliningrad Lagoon, Baltic Sea
Full text

References:

  1. Vrublevsky M. V., Konstantinova A. M., Bourtsev M. A., Interface for working with altimetry data for monitoring inland water bodies, Materialy 21-i Mezhdunarodnoi konferentsii ”Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 21th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow: IKI RAS, 2022, p. 76 (in Russian), DOI: 10.21046/20DZZconf-2023a.
  2. Esiukova E. E., Results of weekly monitoring of the coast of Vistula Lagoon near the Pribrezhny settlement in 2011–2012, Vestnik Baltiiskogo federal’nogo universiteta im. I. Kanta, 2013, No. 1, pp. 82–91.
  3. Zakirov R. B., Chubarenko B. V., Chechko V. A., Hydrolithodynamic conditions of sediment movement through the strait of Baltiysk (Vistula Lagoon, Baltic Sea), Ecological Safety of Coastal and Shelf Zones of Sea, 2022, No. 4, pp. 52–68, DOI: 10.22449/2413-5577-2022-4-52-68.
  4. Ivanov A. Yu., Khlebnikov D. V., KonovalovB. V. et al., Manifestations of river outflows in the Black Sea in remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 191–202 (in Russian), DOI: 10.21046/2070-7401-2018-15-5-191-202.
  5. Kileso A. V., Stont Zh. I., Some aspects of the water level variability of the Curonian Lagoon (South-Eastern Baltic) under various synoptic situations, Hydrometeorology and Ecology, 2020, No. 61, pp. 494–506 (in Russian), DOI: 10.33933/2074-2762-2020-61-494–506.
  6. Lavrova O. Yu., Krayushkin E. V., Soloviev D. M., Golenko M. N., Golenko N. N., Kalashnikova N. A., Demidov A. N., Influence of wind abd hydrodynamic processes on propagation of the Vistula lagoon waters into the Baltic Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 76–99 (in Russian).
  7. Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody vyyavleniya i monitoringa zon ekologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Moscow: IKI RAS, 2016, 334 p. (in Russian).
  8. Lebedev S. A., Kostianoy A. G., Sputnikovaya al’timetriya Kaspiiskogo morya (Satellite altimetry of the Caspian Sea), Moscow: More, 2005, 366 p.
  9. Lisitzin A. P., A marginal filter of the oceans, Oceanology, 1994, Vol. 34, No. 5, pp. 735–747.
  10. Loupian E. A., Proshin A. A., Bourtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  11. Mityagina M. I., Lavrova O. Yu., Feasibility of satellite radar observation of river and lagoon plumes in the southeastern Baltic Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 288–305 (in Russian), DOI: 10.21046/2070-7401-2024-21-5-288-305.
  12. Nazirova K. R., KrayushkinE. V., Monitoring the spread of the Kaliningrad Bay waters in the Gulf of Gdansk (South-East Baltic), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 271–284 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-271-284.
  13. Churin D. A., Stont Zh. I., Ulyanova M. O., Effect of storm situations on the variability of water level in the Curonian Lagoon (Baltic Sea) in 2019, Materialy 7-go Mezhdunarodnogo Baltiiskogo morskogo foruma (Proc.: 7th Baltic maritime forum), 2019, pp. 408–415 (in Russian).
  14. Chubarenko B., Margonski P., The Vistula Lagoon, In: Ecology of Baltic Coastal Waters, Berlin; Heidelberg: Springer-Verlag, 2008, pp. 167–195, DOI: 10.1007/978-3-540-73524-3_8.
  15. Devlin M. J., Petus C., Da Silva E. et al., Water quality and river plume monitoring in the Great Barrier Reef: An overview of methods based on Ocean Colour satellite data, Remote Sensing, 2015, Vol. 7, pp. 12909–12941, DOI: 10.3390/rs71012909.
  16. Dzwonkowski B., Yan X-H., Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data, Continental Shelf Research, 2005, Vol. 25, pp. 1942–1958, https://doi.org/10.1016/j.csr.2005.06.011.
  17. Gasiūnaitė Z. R., Daunys D., Olenin S., et al., The Curonian Lagoon, In: Ecology of Baltic Coastal Waters, Berlin; Heidelberg: Springer, 2008, pp. 197–215, https://doi.org/10.1007/978-3-540-73524-3_9.
  18. Hopkins J., Lucas M., Dufau C., Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level, Remote Sensing of Environment, 2013, Vol. 139, pp. 365–385, DOI: 10.1016/j.rse.2013.08.015.
  19. Horner-Devine A. R., Jay D. A., Orton P. M. et al., A conceptual model of the strongly tidal Columbia River plume, J. Marine Systems, 2009, Vol. 8, Issue 3, pp. 460–475, DOI: 10.1016/j.jmarsys.2008.11.025.
  20. Jakimavičius D., Kriaučiūnienė J., Šarauskienė D., Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century, Oceanologia, 2018, Vol. 60, Issue 3, pp. 378–389, https://doi.org/10.1016/j.oceano.2018.02.003.
  21. Jay D. A., Zaron E. D., Pan J., Initial expansion of the Columbia River tidal plume: Theory and remote sensing observations, J. Geophysical Research: Oceans, 2010, Vol. 115, Issue C2, Article C00B15, https://doi.org/10.1029/2008JC004996.
  22. Johnson D. R., Weidemann A., Arnone R. et al., Chesapeake Bay outflow plume and coastal upwelling events: physical and optical properties, J. Geophysical Research, 2001, Vol. 106, pp. 11613–11622, DOI: 10.1029/1999JC000185.
  23. Kahru M., Elmgren R., Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 2014, Vol. 11, Issue 13, pp. 3619–3633, https://doi.org/10.5194/bg-11-3619-2014.
  24. Lavrova O., Krayushkin E., Golenko M. et al., Effect of wind and hydrographic conditions on the transport of Vistula Lagoon waters into the Baltic Sea: Results of a combined experiment, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, Issue 9, pp. 5193–5201, DOI: 10.1109/JSTARS.2016.2580602.
  25. Li C., Li X., Zhang G. et al., Estuarine plume: A case study by satellite SAR Observations and in situ measurements, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, pp. 2276–2287, DOI: 10.1109/TGRS.2016.2641161.
  26. McClimans T. A., Estuarine fronts and river plumes, In: Physical Processes in Estuaries, J. Dronkers, W. van Leussen (eds.), Springer, 1988, pp. 55–69.
  27. Osadchiev A. A., Sedakov R. O., Spreading dynamics of small river plumes off the northeastern coast of the Black Sea observed by Landsat-8 and Sentinel-2, Remote Sensing of Environment, 2019, Vol. 221, pp. 522–533, DOI: 10.1016/j.rse.2018.11.043.
  28. Ranz S. E., Measurement and computation of streamflow: Vol. 2. Computation of discharge, In: Water Supply Paper 2175, U. S. Geological Survey, 1982, pp. 285–631.
  29. Rud O., Gade M., Monitoring algae blooms in the Baltic Sea: A multi-sensor approach, Proc. IGARSS’99, 1999, Vol. 2, pp. 1211–1213.
  30. Szydłowski M., Kolerski T., Zima P., Impact of the artificial strait in the Vistula Spit on the hydrodynamics of the Vistula Lagoon (Baltic Sea), Water, 2019, Vol. 11, No. 5, Article 990, https://doi.org/10.3390/w11050990.
  31. Umgiesser G., Zemlys P., Erturk A., Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing, Ocean Science, 2016, Vol. 12, pp. 391–402, DOI:10.5194/os-12-391-2016.
  32. Zhang X., Twarog E. M., McLaughlin D. J. et al., Radar scattering behavior of estuarine outflow plumes, IEEE Trans. Geoscience and Remote Sensing, 2004, Vol. 42, No. 2, pp. 367–379, DOI: 10.1109/TGRS.2003.821056.