Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 36-46
Determination of the main parameters of the temporal autocorrelation function of surface level anomalies at some points in the Far Eastern Pacific Ocean
A.A. Romanov
1 ,
A.A. Romanov 1, G.V. Shevchenko
2
1 AO Central Research Institute for Machine Building, Korolev, Moscow Region, Russia
2 Russian Federal Research Institute of Fisheries and Oceanography, Sakhalin Branch, Yuzhno-Sakhalinsk, Russia
Accepted: 12.10.2024
DOI: 10.21046/2070-7401-2024-21-5-36-46
The main problem when using optimal interpolation approaches to reconstruct the fields of spatial distribution of sea surface height anomalies is the search for the main parameters and the type of spatiotemporal autocorrelation functions, which significantly depend on the studied water areas. The use of autocorrelation functions that describe statistics for the world ocean as a whole can lead to significant interpolation errors when reconstructing the spatial distributions of sea surface height anomalies from satellite altimetry data. A study of temporal correlation functions was carried out using data from the TOPEX/Poseidon and Jason 1/2/3 spacecrafts for several selected points of subsatellite tracks in the Pacific Ocean and adjacent seas. The values of the e-folding parameter of the autocorrelation function are presented for the Sea of Japan (150 days) and various parts of the Pacific Ocean, including areas of the North Pacific Current. It is shown that the corresponding values vary from 40 to 100 days, and the influence of the tidal component on the main parameters of the temporal autocorrelation function is considered. Time variability of sea surface height anomalies obtained from satellite data at selected points is analyzed, and some trends are shown. At all points considered, an increase in the values of the studied quantity by at least 20 cm over 30 years is observed.
Keywords: satellite altimetry, time correlation function, time variability statistical characteristics
Full textReferences:
- Gandin L. S., Ob’’ektivnyi analiz meteorologicheskikh polei (Objective analysis of the meteorology fields), Leningrad: Gidrometeorologicheskoe izd., 1963, 288 p. (in Russian).
- Polonskii A. B., Shokurova I. G., Statistical structure of the large-scale fields of the temperature and salinity in the Black Sea, Physical Oceanography, 2008, Vol. 18, No. 1, pp. 38–51, DOI: 10.1007/s11110-008-9008-4.
- Romanov A. A., Romanov A. A., Features of the circulation of the northwestern Pacific Ocean according to satellite altimetry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 232–245 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-232-245.
- Romanov A. A., Romanov A. A., Selected properties of the spatial correlation function of sea surface height anomalies based on satellite altimetry data in the Far Eastern region, Kosmonavtika i raketostroenie, 2024, No. 3, pp. 89–97 (in Russian).
- Shevchenko G. V., Romanov A. A., Tide characteristics determination on the basis of satellite altimetry data in Okhotsk sea, Issledovanie Zemli iz kosmosa, 2004, No. 1, pp. 49–62 (in Russian).
- Shevchenko G. V., Romanov A. A., On the importance of tidal correction for calculation of mean sea level surfaces from IMMOAD SSHA satellite altimetry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 80–91 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-80-91.
- Beckley B., Ray R., Zelensky N. et al., Integrated multi-mission ocean altimeter data for climate research TOPEX/Poseidon, Jason 1, 2, and 3. User’s handbook. Version 5.1. Jet Propulsion Laboratory, California Institute of Technology, 2021, 47 p., DOI: 10.5067/ALTCY-TJA51.
- Benada R., PO.DAAC merged GDR (T/P) users handbook. Rep. JPL D-11007, Pasadena: Jet Propul. Lab., 1993, 111 p.
- Gareth J., Witten D., Hastie T., Tibshiran R., An introduction to statistical learning: with applications in R, Springer, 2021, 440 p., DOI: 10.1080/24754269.2021.1980261.
- Jacobs G. A., Baron C. N., Rodes R. C., Mesoscale characteristics, J. Geophysical Research, 2001, Vol. 105, Issue C9, pp. 19581–19595, https://doi.org/10.1029/2000JC000669.
- Kuragano N., Kamachi M., Global statistical space-time scales of oceanic variability estimated from the TOPEX/Poseidon altimeter data, J. Geophysical Research, 2000, Vol. 105, Issue C1, pp. 955–974, DOI: 10.1029/1999JC900247.
- Le Traon P. Y., Time scales of mesoscale variability and their relationship with space scales in the North Atlantic, J. Marine Research, 1991, Vol. 49, pp. 467–492, DOI: 10.1357/002224091784995828.
- Le Traon P. Y., Rouquet M. C., Boissier C., Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data, J. Geophysical Research, 1990, Vol. 95, Issue C11, pp. 20267–20285. https://doi.org/10.1029/JC095iC11p20267.
- Romanov A. A., Fefilov Y. V., Romanov A. A., Multi-satellite oceanographic monitoring in Far East Region as a part of monitoring, control and surveillance system for Russian fisheries fleet: Preliminary results, Proc. 4 th Intern. Workshop on Ocean Color, 2001, pp. 225–234.