ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 288-305

Feasibility of satellite radar observation of river and lagoon plumes in the southeastern Baltic Sea

M.I. Mityagina 1 , O.Yu. Lavrova 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 06.10.2024
DOI: 10.21046/2070-7401-2024-21-5-288-305
The article considers the features of manifestation of coastal plumes formed by the Vistula outflow and the outflow of waters from the Kaliningrad and Curonian Lagoons in the coastal zone of the southeastern Baltic Sea in satellite radar images of the sea surface. The experimental basis for the study was satellite data obtained for the three areas of interest from May 1, 2022, to April 30, 2024, using synthetic aperture radars C-SAR of the Sentinel-1A, -1B satellites. The study also involved the data from multispectral sensors in the visible range — MSI (Multispectral Instrument) of the Sentinel-2A, -2B satellites and the scanning radiometer OLI (Operational Land Image) of the Landsat-8, -9 satellites accumulated over the same period. We analyzed coastal plumes’ SAR signatures distinguished by various morphological forms. Summarizing the results of the analysis, we identified and described four primary mechanisms of plume visualization in radar images of the Baltic Sea surface: plumes with a pronounced boundary visible as a line of sharp increase of the backscattered signal; plumes with a boundary outlined by slicks; areas of amplification/weakening of the radar signal in a plume without formation of a pronounced front; plume manifestation due to tracers, such as ice/accumulation of biogenic films. In the paper, we provide estimates of relative contribution of these mechanisms to the formation of radar signatures of plumes in each of the three test areas. We also discuss plume area determination accuracy based on various satellite data. The paper emphasizes the importance of using satellite SAR data to obtain detailed information on the spatial variability of river and lagoon water distribution in the test areas.
Keywords: satellite remote sensing, sea surface, satellite radar, SAR, satellite optical data, river outflows, plume of fresh water, surface films, Baltic Sea
Full text

References:

  1. Bass F. G., Fuks M., Wave Scattering from Statistically Rough Surfaces, New York: Pergamon Press, 1979, 527 p.
  2. Bulatov M. G., Kravtsov Yu. A., Lavrova O. Yu. et al., Physical mechanisms of aerospace radar imaging of the ocean, Physics Uspekhi, 2003, Vol. 46, No. 1, pp. 63–79, https://doi.org/10.1070/pu2003v046n01abeh001114/.
  3. Zhukov L. A., Obshchaya okeanologiya (General oceanology), L.: Gidrometeoizdat, 1976, 376 p. (in Russian).
  4. Zavyalov P. O., Makkaveev P. N., Konovalov B. V. et al., Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers of the Russian coast of the Black Sea, Oceanology, 2014, Vol. 54, No. 3, pp. 265–280, DOI: 10.1134/S0001437014030151.
  5. Ivanov A. Yu., Khlebnikov D. V., Konovalov B. V. et al., Manifestations of river outflows in the Black Sea in remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 191–202 (in Russian), DOI: 10.21046/2070-7401-2018-15-5-191-202.
  6. Lavrova O. Yu., Krayushkin E. V., Soloviev D. M., Golenko M. N., Golenko N. N., Kalashnikova N. A., Demidov A. N., Influence of wind abd hydrodynamic processes on propagation of the Vistula lagoon waters into the Baltic Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 76–99 (in Russian).
  7. Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody vyyavleniya i monitoringa zon ekologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Moscow: IKI RAS, 2016, 334 p. (in Russian).
  8. Lavrova O. Yu., Mityagina M. I., Uvarov I. A. et al., Current capabilities and experience of using the See the Sea information system for studying and monitoring phenomena and processes on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 266–287 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-266-287.
  9. Lavrova O. Yu., Nazirova K. R., Alferyeva Ya. O. et al., Comparison of plume parameters of the Sulak and Terek rivers based on satellite data and in situ measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 264–283 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-264-283.
  10. Lazarenko N. N., Majewski A. V., Gidrometeorologicheskij rezhim Vislinskogo zaliva (Hydrometeorological System of the Vistula Lagoon), Leningrad: Gidrometeoizdat, 1971, 279 p. (in Russian).
  11. Mityagina M. I., Lavrova O. Yu., Zhadanova P. D., The influence of hydrodynamic processes on the distribution of Vistula River waters in the Gulf of Gdansk as seen in remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4., pp. 237–250 (in Russian), DOI: 10.21046/2070-7401-2024-21-4-237-250.
  12. Nazirova K. R., KrayushkinE. V., Monitoring the spread of the Kaliningrad Bay waters in the Gulf of Gdansk (South-East Baltic), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 271–284 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-271-284.
  13. Nazirova K. R., Lavrova O. Yu., Krayushkin E. V. et al., Features of river plume parameter determination by in situ and remote sensing methods, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 227–243 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-227-243.
  14. Nazirova K. R., Lavrova O. Yu., Alferyeva Ya. O. et al., Spatiotemporal plume variability of Terek and Sulak rivers from satellite data and concurrent in situ measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 285–303 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-285-303.
  15. Osadchiev A. A., Rechnye plyumy (River plumes), Moscow: Nauchnyi mir, 2021, 285 p. (in Russian).
  16. Rytov S. M., Kravtsov Yu. A., Tatarskii V. I., Principles of statistical radiophysics: wave propagation through random media, Berlin; Heidelberg: Springer-Verlag, 1989, 365 p.
  17. Uvarov I. A., Khalikova O. A., Balashov I. V., Burtsev M. A., Loupian E. A., Matveev A. M., Platonov A. E., Proshin A. A., Tolpin V. A., Krasheninnikova Yu. S., Meteorological data management in framework of the satellite monitoring information systems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 30–45 (in Russian).
  18. Ayad M., Li J., Holt B. et al., Analysis and classification of stormwater and wastewater runoff from the Tijuana River using remote sensing imagery, Frontiers in Environmental Science, 2020, Vol. 8, Article 599030, https://doi.org/10.3389/fenvs.2020.599030.
  19. Chubarenko B., Margonski P., The Vistula Lagoon, In: Ecology of Baltic Coastal Waters, Berlin; Heidelberg: Springer-Verlag, 2008, pp. 167–195, DOI: 10.1007/978-3-540-73524-3_8.
  20. Constantin S., Doxaran D., Constantinescu S., Estimation of water turbidity and analysis of its spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data, Continental Shelf Research, 2016, Vol. 112, pp. 14–30, https://doi.org/10.1016/j.csr.2015.11.009.
  21. Cresswell G. R., Tildesley P. C., Detecting tropical river plumes and island wakes with Radarsat, Canadian J. Remote Sensing, 2000, Vol. 26, No. 4, pp. 267–272, DOI:10.1080/07038992.2000.10874777.
  22. Devlin M. J., Petus C., da Silva E. et al., Water quality and river plume monitoring in the great barrier reef: An overview of methods based on ocean colour satellite data, Remote Sensing, 2015, Vol. 7, pp. 12909–12941, https://doi.org/10.3390/rs71012909.
  23. Dokken S. T., Wahl T., Observations of spiral eddies along the Norwegian Coast in ERS SAR images, FFI Report 96/01463, 1996, http://hdl.handle.net/20.500.12242/1449.
  24. Doxaran D., Froidefond J.-M., Castaing P. et al., Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data, Estuarine, Coastal and Shelf Science, 2009, Vol. 81, pp. 321–332, https://doi.org/10.1016/j.ecss.2008.11.013.
  25. Espedal H. A., Johannessen O. M., Johannessen J. A. et al., COASTWATCH’95: A tandem ERS-1/2 SAR detection experiment of natural film on the ocean surface, J. Geophysical Research, 1998, Vol. 103, pp. 24969–24982, DOI: 10.1029/98JC01660.
  26. Garvine R. W., Physical features of the Connecticut River outflow during high discharge, J. Geophysical Research, 1974, Vol. 79, pp. 831–846, https://doi.org/10.1029/JC079i006p00831.
  27. Garvine R. W., Monk J. D., Frontal structure of a river plume, J. Geophysical Research, 1974, Vol. 79, pp. 2251–2259, https://doi.org/10.1029/JC079i015p02251.
  28. Gernez P., Lafon V., Lerouxel A. et al., Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (Take5) Experiment in the Loire and Gironde Estuaries, Remote Sensing, 2015, Vol. 7, pp. 9507–9528, DOI: 10.3390/rs70809507.
  29. Hessner K., Rubino A., Brandt P., Alpers W., The Rhine outflow plume studied by the analysis of synthetic aperture RADAR data and numerical simulations, J. Physical Oceanography, 2001, Vol. 31, No. 10, pp. 3030–3044, DOI: 10.1175/1520-0485(2001)031<3030:TROPSB>2.0.CO;2.
  30. Horner-Devine A. R., Hetland R. D., MacDonald D. G., Mixing and transport in coastal river plumes, Annual Review of Fluid Mechanics, 2015, Vol. 47, pp. 569–594, https://doi.org/10.1146/annurev-fluid-010313-141408.
  31. Jakimavičius D., Kriaučiūnienė J., Šarauskienė D., Assessment of wave climate and energy resources in the Baltic Sea nearshore (Lithuanian territorial water), Oceanologia, 2018, Vol. 60, No. 2, pp. 207–218, DOI: 10.1016/j.oceano.2017.10.004.
  32. Jay D. A., Pan J., Orton P. M. et al., Asymmetry of Columbia River tidal plume fronts, J. Marine Systems, 2009, Vol. 78, No. 3, pp. 442–459, https://doi.org/10.1016/j.jmarsys.2008.11.015.
  33. Jiang L., Yan X-H., Klemas V., Remote sensing for the identification of coastal plumes: case studies of Delaware Bay, Intern. J. Remote Sensing, 2009, Vol. 30, pp. 2033–2048, https://doi.org/10.1080/01431160802549211.
  34. Kao T. W., Park C., Pao H. P., Buoyant surface discharge and small-scale oceanic fronts: a numerical study, J. Geophysical Research, 1977, Vol. 82, pp. 1747–1752, https://doi.org/10.1029/JC082i012p01747.
  35. Klemas V., Remote sensing of coastal plumes and ocean fronts: Overview and case study, J. Coastal Research, 2012, Vol. 28, No. 1A, pp. 1–7, https://doi.org/10.2112/JCOASTRES-D-11-00025.1.
  36. Kostianoy A. G., Lebedev S. A., Solovyov D. M. et al., On river plumes along the Turkish coast of the Black Sea, Ecologica Montenegrina, 2019, Vol. 25, pp. 63–78, DOI: 10.37828/em.2019.25.7.
  37. Krayushkin E. V., Lavrova O. Yu., Nazirova K. R., Distinctive features of the Vistula Lagoon outflow by remote sensing and oceanographic experiments data, Proc. Conf. “Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2019”, 2019, Vol. 11150, Article 111500W, https://doi.org/10.1117/12.2533024.
  38. Lavrova O., Krayushkin E., Golenko M. et al., Effect of wind and hydrographic conditions on the transport of Vistula Lagoon waters into the Baltic Sea: Results of a combined experiment, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, Issue 9, pp. 5193–5201, DOI: 10.1109/JSTARS.2016.2580602.
  39. Li C., Li X., Zhang G. et al., Estuarine plume: A case study by satellite SAR Observations and in situ measurements, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, pp. 2276–2287, DOI: 10.1109/TGRS.2016.2641161.
  40. Lyzenga D. R., Interaction of short surface and electromagnetic waves with ocean fronts, J. Geophysical Research, 1991, Vol. 96, pp. 10765–10772, https://doi.org/10.1029/91JC00900.
  41. Lyzenga D. R., Effects of intermediate-scale waves on radar signatures of ocean fronts and internal waves, J. Geophysical Research, 1998, Vol. 103, pp. 18759–18768, https://doi.org/10.1029/98JC01189.
  42. Miller R. L., McKee B. A., Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, Remote Sensing Environment, 2004, Vol. 93, pp. 259–266, https://doi.org/10.1016/j.rse.2004.07.012.
  43. Osadchiev A. A., Sedakov R. O., Spreading dynamics of small river plumes off the northeastern coast of the Black Sea observed by Landsat-8 and Sentinel-2, Remote Sensing of Environment, 2019, Vol. 221, pp. 522–533, DOI: 10.1016/j.rse.2018.11.043.
  44. Osadchiev A., Yankovsky A., Editorial: River plumes and estuaries, Frontiers in Marine Science, 2022, Vol. 9, DOI: 10.3389/fmars.2022.986114.
  45. Sletten M., Marmorino G. O., Donato T. F., An airborne, real aperture radar study of the Chesapeake Bay outflow plume, J. Geophysical Research, 1999, Vol. 104, No. C1, pp. 1211–1222, https://doi.org/10.1029/1998JC900034.
  46. Szymkiewicz R., Hydrodynamics of Vistula Lagoon, Warsaw: Polish Academy of Sciences, 1992, 332 p. (in Polish).
  47. Tavora J., Gonçalves G. A., Fernandes E. H. et al., Detecting turbid plumes from satellite remote sensing: State-of-art thresholds and the novel PLUMES algorithm, Frontiers in Marine Science, 2023, Vol. 10, DOI: 10.3389/fmars.2023.1215327.
  48. Umgiesser G., Zemlys P., Erturk A. et al., Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing, Ocean Science, 2016, Vol. 12, pp. 391–402, https://doi.org/10.5194/os-12-391-2016.
  49. Vogelzang J., Ruddick K. G., Moens J. B., On the signatures of river outflow fronts in radar imagery, Intern. J. Remote Sensing, 1997, Vol. 18, pp. 3479–3505.
  50. Warrick J. A., Mertes L. A. K., Siegel D. A. et al., Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS, Intern. J. Remote Sensing, 2004, Vol. 25, pp. 1995–2002, https://doi.org/10.1080/01431160310001619535.
  51. Žaromskis R., Okeanai, jūros, estuarijos (Oceans, seas, estuaries). Vilnius: Debesija, 1996, 278 p. (in Lithuanian).
  52. Zhang X., Twarog E. M., McLaughlin D. J. et al., Radar scattering behavior of estuarine outflow plumes, IEEE Trans. Geoscience and Remote Sensing, 2004, Vol. 42, No. 2, pp. 367–379, DOI: 10.1109/TGRS.2003.821056.
  53. Zheng Q., Clemente-Colon P., Yan X.-H. et al., Satellite synthetic aperture radar detection of Delaware Bay plumes: Jet-like feature analysis, J. Geophysical Research, 2004, Vol. 109, No. C3, pp. C03031.1–C03031.11, DOI: 10.1029/2003JC002100.