ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 20-35

Method of quantitative rainfall estimation based on Himawari-8/9 measurements

A.I. Andreev 1, 2 , A.A. Filey 1, 2 , S.I. Malkovsky 1 , S.P. Korolev 1 
1 Computing Center FEB RAS, Khabarovsk, Russia
2 Far Eastern Center of SRC "Planeta", Khabarovsk, Russia
Accepted: 30.09.2024
DOI: 10.21046/2070-7401-2024-21-5-20-35
The paper presents an algorithm for precipitation estimation based on data from Himawari-8/9 satellite. The algorithm is based on two neural networks of visual transformer and convolutional architectures for preliminary precipitation mask calculation and rain rate estimation. The data from the Global Precipitation Measurements (GPM) international project were used as a reference value of precipitation. These data are based on measurements from various active and passive microwave and infrared satellite instruments. The algorithm takes into account spectral, textural and microphysical parameters of clouds. An accuracy assessment was carried out using GPM data and ground-based rain gauges. The results of a comparison between the algorithm and regional numerical weather prediction model ComsoRu-6 are also given. It is shown that the presented algorithm most accurately estimates the amount of accumulated precipitation sums but it has a tendency to overestimate this value. On the other hand, GPM and CosmoRu-6 often underestimate precipitation. The comparison with GPM product showed a root mean squared error of about 2.19 mm/h.
Keywords: precipitation, rain rate, neural network, Himawari
Full text

References:

  1. Kramareva L. S., Andreev A. I., Bloshchinskiy et al., The use of neural networks in hydrometeorology problems, Computational Technologies, 2019, Vol. 24, No. 6, pp. 50–59 (in Russian), DOI: 10.25743/ICT.2019.24.6.007.
  2. Pavlyukov Yu. B., Serebryannik N. I., Korenev D. P., Okhrimenko V. A., Travov A. V., Shumilin A. A., Yeroshkina N. A., Kozyrev A. V., Belyakova T. A., Metodika validatsii nablyudenii doplerovskikh meteorologicheskikh radiolokatorov, ustanovlennykh na nazemnoi nablyudatel'noi seti (Method for validating doppler weather radar observations installed on a ground observing network), Dolgoprudnyi: Central Aerological Observatory, 2018, 49 p., https://meteorad.ru/static/validation_method_2018.pdf.
  3. Rivin G. S., Rozinkina I. A., Astakhova E. D., Blinov D. V., Bundel A. Yu., Kirsanov A. A., Shatunova M. V., Chubarova N. E., Alferov D. Yu., Varentsov M. I., Zakharchenko D. I., Kopeikin V. V., Nikitin M. A., Polyukhov A. A., Revokatova A. P., Tatarinovich E. V., Churyulin E. V., COSMO-Ru high-resolution short-range numerical weather prediction system: its development and applications, Hydrometeorological Research and Forecasting, 2019, Vol. 374. No. 4, pp. 37–53 (in Russian).
  4. Amorati R., Alberoni P. P., Levizzani V., Nanni S., IR-based satellite and radar rainfall estimates of convective storms over northern Italy, Meteorological Applications, 2000, Vol. 7, No. 1, pp. 1–18, DOI: 10.1017/S1350482700001328.
  5. Amudha B., Raj Y. E.A., Thampi S. B., Ramanathan R. M., Diagnostic and statistical approach to the validation of Doppler radar rainfall around Chennai during 2006–2010, Indian J. Radio and Space Physics, 2014, Vol. 43(2), pp. 163–177.
  6. Andreev A. I., Shamilova Y. A., Cloud detection from the Himawari-8 satellite data using a convolutional neural network, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 9, pp. 1162–1170, DOI: 10.1134/S0001433821090401.
  7. Arkin P. A., The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array, Monthly Weather Review, 1979, Vol. 107, No. 10, pp. 1382–1387, DOI: 10.1175/1520-0493(1979)107<1382:TRBFCO>2.0.CO;2.
  8. Behrangi A., Hsu K., Imam B. et al., PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis, J. Hydrometeorology, 2009, Vol. 10, No. 6, pp. 1414–1429, DOI: 10.1175/2009JHM1139.1.
  9. Breiman L., Classification and regression trees, New York: Routledge, 2017, 368 p., DOI: 10.1175/2009JHM1139.1.
  10. Cao H., Wang Y., Chen J. et al., Swin-unet: Unet-like pure transformer for medical image segmentation, European Conf. Computer Vision, 2022, pp. 205–218, DOI: 10.1007/978-3-031-25066-8_9.
  11. Doms G., Baldauf M. A., A description of the nonhydrostatic regional COSMO-Model. Part I: Dynamics and numerics, 2018, 166 p., http://www.cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf.
  12. Ellrod G. P., Potential use of GOES-I multispectral infrared imagery for nighttime detection of precipitation, Proc. 7 th Conf. Satellite Meteorology and Oceanography, American Meteorological Society, 1994, pp. 164–167.
  13. Gasteiger J., Emde C., Mayer B. et al., Representative wavelengths absorption parameterization applied to satellite channels and spectral bands, J. Quantitative Spectroscopy and Radiative Transfer, 2014, Vol. 148, pp. 99–115, DOI: 10.1016/j.jqsrt.2014.06.024.
  14. Giorgetta M. A., Brokopf R., Crueger T. et al., ICON‐A, the atmosphere component of the ICON Earth system model: I. Model description, J. Advances in Modeling Earth Systems, 2018, Vol. 10, No. 7, pp. 1613–1637, DOI: 10.1029/2017MS001242.
  15. Hayatbini N., Kong B., Hsu K. et al., Conditional generative adversarial networks (cGANs) for near real-time precipitation estimation from multispectral GOES-16 satellite imageries—PERSIANN-cGAN, Remote Sensing, 2019, Vol. 11, No. 19, pp. 2193, DOI: 10.3390/rs11192193.
  16. Heidinger A., Li Y., AWG cloud height algorithm theoretical basis document, NOAA NESDIS Center for Satellite Applications and Research, 2018, 60 p., https://www.ssec.wisc.edu/~daves/ACHA_ATBD.pdf.
  17. Hirose H., Shige S., Yamamoto M. K., Higuchi A., High temporal rainfall estimations from Himawari-8 multiband observations using the random-forest machine-learning method, J. Meteorological Society of Japan, Ser. II, 2019, Vol. 97, No. 3, pp. 689–710, DOI: 10.2151/jmsj.2019-040.
  18. Hong Y., Hsu K. L., Sorooshian S., Gao X., Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system, J. Applied Meteorology, 2004, Vol. 43, No. 12, pp. 1834–1853, DOI: 10.1175/JAM2173.1.
  19. Hsu K., Gao X., Sorooshian S., Gupta H. V., Precipitation estimation from remotely sensed information using artificial neural networks, J. Applied Meteorology and Climatology, 1997, Vol. 36, No. 9, pp. 1176–1190, DOI: 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.
  20. Huffman G. J., Bolvin D. T., Braithwaite D. et al., Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG), Satellite precipitation measurement, 2020, Vol. 1, pp. 343–353, DOI: 10.1007/978-3-030-24568-9_19.
  21. Jia Z., Yang S., Zhang J. et al., PRSOT: Precipitation retrieval from satellite observations based on transformer, Atmosphere, 2022, Vol. 13, No. 12, Article 2048, DOI: 10.3390/atmos13122048.
  22. Key J. R., Intrieri J. M., Cloud particle phase determination with the AVHRR, J. Applied Meteorology and Climatology, 2000, Vol. 39, No. 10, pp. 1797–1804, DOI: 10.1175/1520-0450-39.10.1797.
  23. King P. W. S., Hogg W. D., Arkin P. A., The role of visible data in improving satellite rain-rate estimates, J. Applied Meteorology, 1995, Vol. 34, No. 7, pp. 1608–1621, DOI: 10.1175/1520-0450-34.7.1608.
  24. Kurino T., A satellite infrared technique for estimating “deep/shallow” precipitation, Advances in Space Research, 1997, Vol. 19, No. 3, pp. 511–514, DOI: 10.1016/S0273-1177(97)00063-X.
  25. Levizzani V., Cattani E., Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate, Remote sensing, 2019, Vol. 11, No. 19, Article 2301, DOI: 10.3390/rs11192301.
  26. Li X. F., Blenkinsop S., Barbero R. et al., Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO, Climate Dynamics, 2020, Vol. 54, pp. 4823–4839, DOI: 10.1007/s00382-020-05258-7.
  27. Liu Q., Li Y., Yu M. et al., Daytime rainy cloud detection and convective precipitation delineation based on a deep neural Network method using GOES-16 ABI images, Remote Sensing, 2019, Vol. 11, No. 21, Article 2555, DOI: 10.3390/rs11212555.
  28. Lu N., Evaluation of IMERG precipitation products in the Southeast Costal Urban Region of China, Remote Sensing, 2022, Vol. 14, No. 19, Article 4947, DOI: 10.3390/rs14194947.
  29. Lundberg S. M., Lee S. I., A unified approach to interpreting model predictions, Proc. 31 st Conf. Neural Information Processing Systems (NIPS 2017), 2017, Vol. 30, Article 10.
  30. Mahrooghy M., Anantharaj V. G., Younan N. H. et al., On an enhanced PERSIANN-CCS algorithm for precipitation estimation, J. Atmospheric and Oceanic Technology, 2012, Vol. 29, No. 7, pp. 922–932, DOI: 10.1175/JTECH-D-11-00146.1.
  31. Min M., Bai C., Guo J. et al., Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning, IEEE Trans. Geoscience and Remote Sensing, 2018, Vol. 57, No. 5, pp. 2557–2570, DOI: 10.1109/TGRS.2018.2874950.
  32. Moazami S., Najafi M. R., A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada, J. Hydrology, 2021, V. 594, Article 125929, DOI: 10.1016/j.jhydrol.2020.125929.
  33. Moraux A., Dewitte S., Cornelis B., Munteanu A., Deep learning for precipitation estimation from satellite and rain gauges measurements, Remote Sensing, 2019, Vol. 11, No. 21, Article 2463, DOI: 10.3390/rs11212463.
  34. Nakajima T., King M. D., Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory, J. Atmospheric Sciences, 1990, Vol. 47, No. 15, pp. 1878–1893, DOI: 10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.
  35. Poulsen C. A., Siddans R., Thomas G. E. et al., Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR, Atmospheric Measurement Techniques, 2012, Vol. 5, No. 8, pp. 1889–1910, DOI: 10.5194/amt-5-1889-2012.
  36. Prigent C., Precipitation retrieval from space: An overview, Comptes Rendus Geoscience, 2010, V. 342, No. 5, pp. 380–389, DOI: 10.1016/j.crte.2010.01.00.
  37. Pruppacher H. R., Klett J. D., Microphysics of Clouds and Precipitation, Dordrecht: Reidel, 1979, 714 p.
  38. Roebeling R. A., Holleman I., SEVIRI rainfall retrieval and validation using weather radar observations, J. Geophysical Research: Atmospheres, 2009, Vol. 114, Issue D21, DOI: 10.1029/2009JD012102.
  39. Rossow W. B., Schiffer R. A., Advances in understanding clouds from ISCCP, Bull. American Meteorological Society, 1999, Vol. 80, No. 11, pp. 2261–2288, DOI: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.
  40. Sadeghi M., Asanjan A. A., Faridzad M. et al., PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks–convolutional neural networks, J. Hydrometeorology, 2019, Vol. 20, No. 12, pp. 2273–2289, DOI: 10.1175/JHM-D-19-0110.1.
  41. Sun Q., Miao C., Ashouri H. et al., A review of global precipitation data sets: Data sources, estimation, and intercomparisons, Reviews of Geophysics, 2018, Vol. 56, No. 1, pp. 79–107, DOI: 10.1002/2017RG000574.
  42. Tapiador F. J., Marcos C., Sancho J. M., The convective rainfall rate from cloud physical properties algorithm for Meteosat Second-Generation satellites: Microphysical basis and intercomparisons using an object-based method, Remote Sensing, 2019, Vol. 11, No. 5, Article 527, DOI: 10.3390/rs11050527.
  43. Wang P. K., Physics and dynamics of clouds and precipitation, Cambridge: Cambridge University Press, 2013, 452 p., https://doi.org/10.1017/CBO9780511794285.