ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 263-274

Arctic sea ice classification using AMSR2 data

E.V. Zabolotskikh 1 , M.A. Zhivotovskaia 1 , E.V. Lvova 1 , K.I. Yarusov 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 18.09.2024
DOI: 10.21046/2070-7401-2024-21-5-263-274
Sea ice classification by age is one of the most important tasks of Arctic satellite monitoring. The solution of this task is necessary to ensure the safety of navigation in ice. This paper presents a new method for classifying sea ice in the Arctic by age (type) with the data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) based on the significant variations in the differences (D) of vertically polarized effective emission coefficients of sea ice of different age gradations. A database of polygons with three sea ice types with significantly different radiative properties — multi-year, first-year and young ice — was created. Each polygon had a 100% partial sea ice concentration. The database was created using the facilities of the Arctic Portal based on the analysis of Sentinel-1 synthetic aperture radar (SAR) images. AMSR2 measurements collocated with Sentinel-1 SAR images in space and time were used in the analysis of D. The effective emission coefficients for different sea ice types were calculated using the AMSR2 measurements and a previously developed method for atmospheric microwave radiation parameter estimation, not requiring additional data for its application. The probability density functions for the three differences between the coefficients of the vertically polarized sea ice emission at the frequencies of 36.5, 23.8, 18.7, 10.65 and 6.9 GHz turned out to be practically non-overlapping, which made it possible to propose a method for sea ice classification based on the use of D threshold values. The method is applicable only to 100% sea ice concentration areas. The method was verified by a comparison with the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF) data.
Keywords: Arctic, sea ice, classification, sea ice type, AMSR2
Full text

References:

  1. Zabolotskikh E. V., Azarov S. M., Atmospheric correction in the Arctic sea ice studies with the AMSR2 data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 19–34, DOI: 10.21046/2070-7401-2023-20-3-19-34.
  2. Zabolotskikh E. V., Balashova E. A., Chapron B., Advanced method for sea ice concentration retrieval from satellite microwave radiometer measurements at frequencies near 90 GHz, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 233–243 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-233-243.
  3. Zabolotskikh E. V., Khvorostovsky K. S., Balashova E. A., Kostylev A. I., Kudryavtsev V. N., Identification of large-scale sea ice ridge areas in the Arctic using ASCAT data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 165–177 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-165-177.
  4. Smirnov V. G., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the sea ice cover), Saint Petersburg: AANII, 2011, 240 p. (in Russian).
  5. Aaboe S. Breivik L.-A., Sørensen A., Eastwood S., Lavergne T., Global sea ice edge and type product user’s manual, OSI-403-C EUMETSAT, 2016, 61 p.
  6. Belchansky G. I., Douglas D. C., Platonov N. G., Spatial and temporal variations in the age structure of Arctic sea ice, Geophysical Research Letters, 2005, Vol. 32, No. 18, Article 2005GL023976, DOI: 10.1029/2005GL023976.
  7. Carsey F. D., Microwave remote sensing of sea ice, Book ser. Geophysical Monograph 68, Washington D. C.: American Geophysical Union, 1992, 462 p.
  8. Cavalieri D. J., Gloersen P., Campbell W. J., Determination of sea ice parameters with the Nimbus-7 SMMR, J. Geophysical Research: Atmospheres 1984–2012, 1984, Vol. 89, No. D4, pp. 5355–5369, DOI: 10.1029/JD089iD04p05355.
  9. Comiso J. C., Arctic multiyear ice classification and summer ice cover using passive microwave satellite data, J. Geophysical Research Oceans, 1990, Vol. 95, No. C8, pp. 13411–13422, DOI: 10.1029/JC095iC08p13411.
  10. Comiso J. C., Large decadal decline of the arctic multiyear ice cover, J. Climate, 2012, Vol. 25, No. 4, pp. 1176–1193, DOI: 10.1175/JCLI-D-11-00113.1.
  11. Comiso J. C., Cavalieri D. J., Markus T., Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, No. 2, pp. 243–252, DOI: 10.1109/TGRS.2002.808317.
  12. Dierking  W., Sea ice classification on different spatial scales for operational and scientific use, ESA Living Planet Symp., 2013, Article 125, DOI: 10013/epic.44280.
  13. Gloersen P., Cavalieri D. J., Reduction of weather effects in the calculation of sea ice concentration from microwave radiances, J. Geophysical Research: Oceans, 1986, Vol. 91, No. C3, pp. 3913–3919, DOI: 10.1029/jc091ic03p03913.
  14. Grenfell T. C., Hawkins R., Livingstone C. et al., Evolution of electromagnetic signatures of sea ice from initial formation to the establishment of thick first-year ice, IEEE Trans. Geoscience and Remote Sensing, 1998, Vol. 36, No. 5, pp. 1642–1654, DOI: 10.1109/36.718636.
  15. Kwok R., Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003, J. Geophysical Research: Oceans, 2004, Vol. 109, No. C11, Article C11004, DOI: 10.1029/2003JC002238.
  16. Kwok R., Rignot E., Holt B., Onstott R., Identification of sea ice types in spaceborne synthetic aperture radar data, J. Geophysical Research: Oceans, 1992, Vol. 97, No. C2, pp. 2391–2402, DOI: 10.1029/2003JC002238.
  17. Lindell D. B., Long D. G., Multiyear Arctic sea ice classification using OSCAT and QuikSCAT, IEEE Trans. Geoscience and Remote Sensng, 2015, Vol. 54, No. 1, pp. 167–175, DOI: 10.1109/TGRS.2015.2452215.
  18. Lindell D. B., Long D. G., Multiyear Arctic ice classification using ASCAT and SSMIS, Remote Sensing, 2016, Vol. 8, No. 4, Article 294, DOI: 10.3390/rs8040294.
  19. Lomax A. S., Lubin D., Whritner R. H., The potential for interpreting total and multiyear ice concentrations in SSM/I 85.5 GHz imagery, Remote Sensing Environment, 1995, Vol. 54, No. 1, pp. 13–26, DOI: 10.1016/0034-4257(95)00082-C.
  20. Otosaka I., Rivas M. B., Stoffelen A., Bayesian sea ice detection with the ERS scatterometer and sea ice backscatter model at C-band, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 56, No. 4, pp. 2248–2254, DOI: 10.1109/TGRS.2017.2777670.
  21. Rinne E., Similä M., Utilisation of CryoSat-2 SAR altimeter in operational ice charting, The Cryosphere, 2016, Vol. 10, No. 1, pp. 121–131. DOI: 10.1109/TGRS.2017.2777670.
  22. Rivas M. B., Verspeek J., Verhoef A., Stoffelen A., Bayesian sea ice detection with the advanced scatterometer ASCAT, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2649–2657, DOI: 10.1109/TGRS.2011.2182356.
  23. Rivas M. B., Otosaka I., Stoffelen A., Verhoef A., A scatterometer record of sea ice extents and backscatter: 1992–2016, The Cryosphere, 2018, Vol. 12, No. 9, pp. 2941–2953, DOI: 10.5194/tc-12-2941-2018.
  24. Shokr M., Lambe A., Agnew T., A new algorithm (ECICE) to estimate ice concentration from remote sensing observations: An application to 85-GHz passive microwave data, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 12, pp. 4104–4121, DOI: 10.1109/TGRS.2008.2000624.
  25. Swan A. M., Long D. G., Multiyear Arctic sea ice classification using QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 9, pp. 3317–3326, DOI: 10.1109/TGRS.2012.2184123.
  26. Ye Y., Shokr M., Heygster G., Spreen G., Improving multiyear sea ice concentration estimates with sea ice drift, Remote Sens., 2016, Vol. 8, No. 5, Article 397, DOI: 10.3390/rs8050397.
  27. Zabolotskikh E. V., Azarov S. M., Wintertime emissivities of the Arctic Sea ice types at the AMSR2 Frequencies, Remote Sensing, 2022, Vol. 14, No. 23, Article 5927, DOI: 10.3390/rs14235927.
  28. Zabolotskikh E. V., Chapron B., Estimation of atmospheric microwave radiation parameters over the Arctic Sea ice from the AMSR2 Data, IEEE Trans. Geoscience and Remote Sensing, 2024, Vol. 62, pp. 1–11, DOI: 10.1109/TGRS.2024.3392369.
  29. Zabolotskikh E. V., Khvorostovsky K. S., Chapron B., An advanced algorithm to retrieve total atmospheric water vapor content from the advanced microwave scanning radiometer data over sea ice and sea water surfaces in the Arctic, IEEE Trans. Geoscience and Remote Sensing, 2020, Vol. 58, No. 5, pp. 3123–3135, DOI: 10.1109/TGRS.2019.2948289.