Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 188-202
Research on the possibilities of determining the structural characteristics of plant communities dominated by reeds using high-resolution satellite imagery, ground measurements and unmanned aerial vehicles
S.S. Shinkarenko
1 , S.A. Bartalev
1 , N.V. Litvinova
2 1 Space Research Institute RAS, Moscow, Russia
2 Astrakhan State Nature Biosphere Reserve, Astrakhan, Russia
Accepted: 10.09.2024
DOI: 10.21046/2070-7401-2024-21-5-188-202
Plant communities dominated by reeds ((Phragmites altissimus (Benth.) Mabille, (Phragmites australis (Cav.) Trin. ex Steud.) are widely distributed in floodplain and delta landscapes. Despite their significant biospheric role and potential for industrial use, insufficient attention has been paid to the mapping and assessment of these communities in Russia. The objective of this study is to explore the possibilities of mapping biomass and vegetation height in reed-dominated communities in the Volga Delta using Sentinel-1/2 satellite data supported by ground measurements and aerial surveys conducted with a drone. Allometric relationships between the heights, stem diameters of reeds, and biomass were established for 92 sample plots within the Astrakhan Nature Reserve in the Volga Delta enabling the use of aerial imagery to obtain reference data through photogrammetric methods. The application of vegetation height calculated photogrammetrically based on aerial imagery across 27 test polygons combined with temporally distinct satellite data and the Random Forest non-parametric regression method yielded a high accuracy in mapping heights (coefficient of determination R 2 = 0.80, root mean square error (RMSE) 0.46 m) and biomass (R 2 = 0.65, RMSE = 12.6 t/ha) of reed-dominated communities in the Volga Delta. Thus, the approach employed proves to be effective for mapping the biomass of reed communities in the Volga Delta and similar landscapes.
Keywords: wetlands, Astrakhan region, Volga Delta, phytomass, Sentinel-2, reed
Full textReferences:
- Barmin A. N., Golub V. B., Instructive lesson of results of reed thickets operation in the Volga river delta, Izvestiya Samarskogo nauchnogo tsentra RAN, 2000, Vol. 2, No. 2, pp. 295–299 (in Russian).
- Bartalev S. A., Khvostikov S. A., Certificate of state registration of a computer program No. 2023666251 Russian Federation. FORS-MachLearn, No. 2023664950, Statement 07.14.2023, Publ. 07.27.2023.
- Ginzburg A. I., Kostianoy A. G., Serykh I. V., Lebedev S. A., Climatic changes in hydrometeorological parameters of the Caspian Sea (1980–2020), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 277–291 (in Russian), DOI: 10.21046/2070-7401-2021-18-5-277-291.
- Golub V. B., Nikolaychuk L. F., L. G. Ramensky and allometry of plants (history and current state of the problem), Raznoobrazie rastitel’nogo mira, 2021, No. 1(8), pp. 30–50 (in Russian), DOI: 10.22281/2686-9713-2021-1-30-50.
- Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
- Novikova N. M., Iljina I. S., Safronova I. N., Mapping the flood-plain vegetation of the Lower Volga river, Geobotanicheskoe kartografirovanie, 2000, No. 1998–2000, pp. 62–77 (in Russian), DOI: 10.31111/geobotmap/1998-2000.62.
- Papchenkov V. G., About distribution of Phragmites altissimus (Benth.) Nabille (Poaceae), Rossiiskii zhurnal biologicheskikh invazii, 2008, Vol. 1, No. 1, pp. 36–41 (in Russian).
- Sokolova N. A., Kostin V. E., Khlobzheva I. N. et al., Functional use of winter harvesting reed biomass in the Lower Volga regions, Problemy regional’noi ekologii, 2020, No. 5, pp. 25–30 (in Russian), DOI: 10.24412/1728-323X-2020-5-25-30.
- Khoroshev A. V., Kalmykova O. G., Dusaeva G. Kh., Evaluation of the NDVI index as a source of information on aboveground phytomass in steppes, Issledovanie Zemli iz kosmosa, 2023, No. 3, pp. 27–43 (in Russian), DOI: 10.31857/S020596142303003X.
- Chuvashov A. V., Malov D. N., Stepanova N. Yu., Golub V. B., Assessment of plant community dynamics in the eastern part of the Volga river delta for the period of 1980–2023, Arid ecosystems, 2024, Vol. 30, No. 1, pp. 67–74 (in Russian), DOI: 10.24412/1993-3916-2024-1-67-74.
- Shinkarenko S. S., Bartalev S. A. (2023a), Analysis of the influence of species composition, projective cover, and phytomass of arid landscape pasture vegetation on spectral reflectance properties based on ground measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 176–192 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-176-192.
- Shinkarenko S. S., Bartalev S. A. (2023b), Application of remote sensing data for wetlands large-scale monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 9–34 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-9-34.
- Shinkarenko S. S., Bartalev S. A., Analysis of the relationship between structural and spectral-reflective characteristics of vegetation in arid grassland landscapes, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 171–187 (in Russian), DOI: 10.21046/2070-7401-2024-21-3-171-187.
- Shinkarenko S. S., Ivanov N. M., Berdengalieva A. N., Spatio-temporal dynamics of burnt areas in federal protected areas of South-East of the European part of Russia, Nature Conservation Research, 2021, Vol. 6, No. 3, pp. 23–44 (in Russian), DOI: 10.24189/ncr.2021.035.
- Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N. (2022a), Satellite observations of reed fire smoke on the Lower Volga, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 93–105 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-93-105.
- Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N., Ivanov N. M. (2022b), Spatio-temporal analysis of burnt area in The Lower Volga floodplain, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 143–157 (in Russian), DOI: 10.21046/2070-7401-2022-19-1-143-157.
- Shinkarenko S. S., Bartalev S. A., Bogodukhov M. A. et al., The Lower Volga floodplain classification based on long-term hydrological and remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 119–135 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-119-135.
- Yanovskiy A. A., Sozinov O. V., Automated remote express evaluation of the distribution of Phragmites australis reed beds prospective for fuel biomass harvesting, Rastitelnye resursy, 2017, Vol. 53, No. 4, pp. 555–580 (in Russian).
- Asaeda T., Karunaratne S., Dynamic modeling of the growth of Phragmites australis: model description, Aquatic Botany, 2000, Vol. 67, Issue 4, pp. 301–318, DOI: 10.1016/S0304-3770(00)00095-4.
- Baibagyssov A., Thevs N., Nurtazin S. et al., Biomass resources of Phragmites australis in Kazakhstan: Historical developments, utilization, and prospects, Resources, 2020, Vol. 9, Article 74, DOI: 10.3390/resources9060074.
- Eller F., Guo X., Ye S. et al., Suitability of wild Phragmites australis as bio-resource: Tissue quality and morphology of populations from three continents, Resources, 2020, Vol. 9, No. (12). Article 143, DOI: 10.3390/resources9120143.
- Köbbing J. F., Thevs N., Zerbe S., The utilisation of reed (Phragmites australis): A review, Mires and Peat, 2013, Vol. 13, Article 1.
- Loupian E., Burtsev M., Proshin A. et al., Usage experience and capabilities of the VEGA-Science System, Remote Sensing, 2022, Vol. 14, No. 1, Article 77, DOI: 10.3390/rs14010077.
- Li W., Dou Z., Wang Y. et al., Estimation of above-ground biomass of reed (Phragmites communis) based on in situ hyperspectral data in Beijing Hanshiqiao Wetland, China, Wetlands Ecology and Management, 2019, Vol. 27, pp. 87–102, DOI: 10.1007/s11273-018-9644-5.
- Lu L., Luo J., Xin Y. et al., How can UAV contribute in satellite-based Phragmites australis aboveground biomass estimating? Intern. J. Applied Earth Observation and Geoinformation, 2022, Vol. 114, Article 103024, DOI: 10.1016/j.jag.2022.103024.
- Lucy G. P., Gregory J. M., A systematic review of the factors influencing the estimation of vegetation aboveground biomass using unmanned aerial systems, Remote Sensing, 2020, Vol. 12, Article 1052, DOI: 10.3390/rs12071052.
- Luo S., Wang C., Xi X. et al., Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data, Intern. J. Applied Earth Observation and Geoinformation, 2017, Vol. 58, pp. 107–117, DOI: 10.1016/j.jag.2017.01.016.
- Wang S., Li S., Zheng S. et al., Estimating biomass and carbon sequestration capacity of Phragmites australis using remote sensing and growth dynamics modeling: A case study in Beijing Hanshiqiao Wetland nature reserve, China, Sensors, 2022, Vol. 22, No. 9. Article 3141, DOI: 10.3390/s22093141.
- Wang Z., Ma Y., Zhang Y., Shang J., Review of remote sensing applications in grassland monitoring, Remote Sensing, 2022, Vol. 14, No. 12, Article 2903, DOI: 10.3390/rs14122903.
- Zhao Y., Mao D., Zhang D. et al., Mapping Phragmites australis aboveground biomass in the Momoge Wetland Ramsar site based on Sentinel-1/2 images, Remote Sensing, 2022, Vol. 14, No. 3, Article 694, DOI: 10.3390/rs14030694.