ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 63-74

Algorithm for determining design parameters of a small spacecraft with radar imaging equipment at the preliminary design stage

O.D. Zhaldybina 1 , M.D. Korovin 1 , M.A. Ivanushkin 1, 2 , I.S. Tkachenko 1 
1 Samara National Research University, Samara, Russia
2 Image Processing Systems Institute — Samara, NRC “Kurchatov Institute”, Samara, Russia
Accepted: 26.08.2024
DOI: 10.21046/2070-7401-2024-21-5-63-74
Currently, small spacecraft with radar imaging equipment are becoming more and more widespread. The work is aimed at increasing the efficiency of small spacecraft with radar imaging equipment. A review of modern Earth remote sensing spacecraft carrying synthetic aperture radar payloads is carried out. The process of preliminary design of synthetic aperture radar with a planar array for Earth remote sensing tasks from space is considered. The algorithm for designing a small spacecraft with a synthetic aperture radar, taking into account the uncertainty of the orbital characteristics of the spacecraft is proposed. The developed algorithm makes it possible to obtain a preliminary estimate of such operating parameters as deflection angle and pulse repetition rate of synthetic aperture radar, which are necessary to ensure the required capture bandwidth and resolution depending on the orbital altitude at the stage of designing the sensors. Using the proposed methodology, the design characteristics of the developed small radar spacecraft were evaluated using the proposed algorithm. The results of this study can be used in determining the design characteristics of small spacecraft with radar imaging equipment at the preliminary development stage.
Keywords: small spacecraft, synthetic aperture radar, Earth remote sensing, CubeSat, orbital characteristics
Full text

References:

  1. Bartalev S. A., Burnaev E. V., Verba V. S., Ivliev N. A., Kazansky N. L., Kaperko A. F., Loupian E. A., Nikonorov A. V., Skidanov R. V., Chernienko A. A., Panchenko V. Y., Mul’tispektral’nyi intellektual’nyi monitoring prirodnoi i tekhnogennoi sredy (Multispectral intelligent monitoring of natural and anthropogenic environment), Samara: New Technology Publishing House, 2023, 184 p. (in Russian).
  2. Kostrov V. V., Rakitkin A. V., Radar space segment of Earth remote sensing in 2023: status and prospects for development, Radio engineering and telecommunication systems, 2023, Vol. 4, pp. 11–31 (in Russian), DOI: 10.24412/2221-2574-2023-4-11-31.
  3. Nafieva E. N., Grechishchev A. V., Space radar systems of Earth monitoring, Ecology. Economics. Informatics. Geoinformation Technologies and Space Monitoring, 2020, Vol. 2, No. 5, pp. 89–95 (in Russian), DOI: 10.23885/2500-123X-2020-2-5-89-95.
  4. Bouça P., Matos J. N., Cunha S. R. et al., Low-profile aperture-coupled patch antenna array for CubeSat applications, IEEE Access, 2020, Vol. 8, pp. 20473–20479, DOI: 10.1109/ACCESS.2020.2968060.
  5. Engelen S., van den Oever M., Mahapatra P., Sundaramoorthy P., Gill E., Meijer R., Verhoeven C., NanoSAR — Case study of synthetic aperture radar for nano-satellites, Proc. 63 rd Intern. Astronautical Congress, 2012, pp. 1–6.
  6. Freeman A., Johnson W. T. K., Honeycutt B. et al., The myth of the minimum SAR antenna area constraint, IEEE Trans. Geoscience Remote Sensing, 2000, Vol. 38, pp. 320–324, DOI: 10.1109/36.82392.
  7. Fursov V. A., Images recognition with selection of informative subspaces by conjugacy criterion, Pattern Recognition and Image Analysis, 2022, Vol. 32, pp. 528–532, DOI: 10.1134/S1054661822030129.
  8. Fursov V., Zherdev D., Kazanskiy N., Support subspaces method for synthetic aperture radar automatic target recognition, Intern. J. Advanced Robotic Systems, 2016, Vol. 13, No. 5, pp. 1–11, DOI: 10.1177/1729881416664848.
  9. García Mondéjar A., Feasibility study on SAR systems on small satellites, Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona, Departamento de Teoría del Sensual y Comunicaciones, Barcelona, 2009, 84 p.
  10. Ma H., Stove A. G., Atkinson G. et al., Passive SAR using small satellite receivers for persistent Earth observation, Intern. Conf. Radar Systems (Radar 2017), 2017, pp. 1–6, DOI: 10.1049/cp.2017.0490.
  11. Kazanskiy N. L., Fursov V. A., Minaev E. et al., Radar image modeling and recognition, 17 th Intern. Scientific and Technical Conference “Optical Technologies for Telecommunications”, 2020, Vol. 11516, Article 115161J, DOI: https://doi.org/10.1117/12.2566467.
  12. Pavlov V. A., Belov A. A., Volvenko S. V. et al., Application of convolutional neural networks trained on optical images for object detection in radar images, Computer Optics, 2024, Vol. 48, No. 2, pp. 253–259, DOI: 10.18287/2412-6179-CO-1316.
  13. Peral E., Im E., Wye L. et al., Radar technologies for Earth remote sensing from CubeSat platforms, Proc. IEEE, 2018, Vol. 106, No. 3, pp. 404–418, DOI: 10.1109/JPROC.2018.2793179.
  14. Urata K. N., Sri Sumantyo J. T., Santosa C. E. et al., Development of an L-band SAR microsatellite antenna for Earth observation, Aerospace, 2018, Vol. 5, No. 4, Article 128, DOI: https://doi.org/10.3390/aerospace5040128.