ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 335-353

Sea level as an indicator of interannual variability of water circulation and climate in the North Atlantic

V.N. Malinin 1 , Ya.I. Angudovich 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 10.09.2024
DOI: 10.21046/2070-7401-2024-21-5-335-353
The paper analyses the relationship between the interannual variability of sea level characteristics, water circulation, and various climatic indices in the North Atlantic. Sea level gradients (Δh) at the ends of local sections characterising the geostrophic current components, as well as the average sea level value at these sections (hav) have been calculated at latitudinal sections of 26° N (80–15° W) and 56° N (57–10° W) for the period 1993–2022 according to altimetric data available since 1993. The section at latitude 26° N serves as a reference for the STG (Subtropical Gyre), and the one at latitude 56° — for the SPG (Subpolar Gyre). It is shown that Δh and av in the local sections (57–38, 38–28 and 28–10° W) of latitude 56° N have a significant correlation with climatic indices, being especially high for the eastern 28–10° W section. A high statistical relationship has been noted between sea level changes in the 56° N section and sea surface temperature in the northern seas, which shows the weakening of the deep-sea convection with the sea level rise in the Labrador and Irminger seas, as well as in the Greenland Basin. Statistical parameterization of AMOC (Atlantic Meridional Overturning Circulation) and QUMO (Reverse water flow due to recirculation of the subtropical gyre) has been carried out for the latitude section at 56° N according to the sea level data. The accuracy of estimating AMOC and QUMO is shown to be in the range of 89–96 % of the contribution to variance. The integral North Atlantic Circulation index representing the difference in the sea level at latitudinal sections of 26° (80–15° W) and 56° (57–10° W) can be used as a characteristic of the circulation in the system of cyclonic and anticyclonic gyres (SPG and STG). Taking into account its high statistical relationship with the North Atlantic Oscillation and other indices, it can serve as an important indicator of interannual variability of water circulation and climate in the North Atlantic.
Keywords: North Atlantic, sea level, water circulation, deep convection, climate indices
Full text

References:

  1. Aksenov P. V., Ivanov V. V., “Atlantification” as a possible cause for reducing of the sea-ice cover in the Nansen Basin in winter, Arctic and Antarctic Research, 2018, Vol. 64, No. 1, pp. 42–54 (in Russian), https://doi.org/10.30758/0555-2648-2018-64-1-42-54.
  2. Alekseev G. V., Development and amplification of global warming in the Arctic, Fundamental and applied climatology, 2015, No. 1, pp. 11–26 (in Russian).
  3. Belonenko T. V., Fedorov A. M., Steric level fluctuations and deep convection in the Labrador and Irminger Seas, Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54, No. 9, pp. 1039–1049 (in Russian), DOI: 10.1134/S0001433818090086.
  4. Belonenko T. V., Koldunov A. V., On the trends of steric level fluctuations in the North Atlantic, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 9, pp. 1106–1113 (in Russian), DOI: 10.1134/S0001433819090081.
  5. Dvoryaninov G. S., Kubryakov A. A., Sizov A. A. et al., The North Atlantic: A dominant factor in variations of oceanic circulation systems of the Atlantic Ocean, Doklady Earth Sciences, 2016, Vol. 466, No. 1, pp. 100–104 (in Russian), DOI: 10.1134/S1028334X16010207.
  6. Gladyshev S. V., Gladyshev V. S., Falina A. S., Sarafanov A. A., Winter convection in the Irminger Sea in 2004–2014, Oceanology, 2016, Vol. 56, No. 3, pp. 326–335 (in Russian), DOI: 10.1134/S0001437016030073.
  7. Ivanov V. V., Present changes in hydrometeorological conditions in the Arctic Ocean associated with reduction of the sea ice cover, Hydrometeorology and Ecology, 2021, No. 64, pp. 407–434 (in Russian), DOI: 10.33933/2713-3001-2021-64-407-434.
  8. Ivanov V. V., Alekseev V. A., Repina I. A., Increasing impact of Atlantic waters on the ice cover of the Arctic Ocean, Mezhdunarodnaya konferentsiya pamyati akademika A. M. Obukhova “Turbulentnost’, dinamika atmosfery i klimata”: trudy (Turbulence, dynamics of the atmosphere and climate: Proc. Intern. Conf. in Memory of Academician A. M. Obukhov), Moscow: GEOS, 2014, pp. 267–273 (in Russian).
  9. Krasheninnikova S. B., Vodnye massy i perenosy tepla v Severnoi Atlantike (Water mass and heat transfer in the North Atlantic), Simferopol: IT “ARIAL”, 2019, 124 p. (in Russian).
  10. Lappo S. S., On the question of the causes of heat advection northward across the equator in the Atlantic Ocean, In: Issledovanie protsessov vzaimodeistviya okeana i atmosfery (Investigation of the processes of interaction between the ocean and the atmosphere), Moscow, 1984, pp. 125–129 (in Russian).
  11. Lappo S. S., Gulev S. K., Rozhdestvensky A. E., Krupnomasshtabnoe teplovoe vzaimodeistvie v sisteme okean – atmosfera i energoaktivnye zony Mirovogo okeana (Large-scale heat interaction in the Ocean-Atmosphere system and energetically active zones of the world ocean), Leningrad: Gidrometeoizdat, 1990, 336 p. (in Russian).
  12. Malinin V. N., Statisticheskie metody analiza gidrometeorologicheskoi informatsii (Statistical methods of analysis of hydrometeorological information), Saint Petersburg: RGGMU, 2008, 408 p. (in Russian)
  13. Malinin V. N., The Gulf Stream and the climate of Europe, Society. Wednesday. Development, 2012, Issue 22, No. 1, pp. 214–220 (in Russian).
  14. Malinin V. N., Angudovich Ya. I., Variability of sea level and circulation in the North Atlantic from satellite altimetry, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 281–294 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-281-294.
  15. Malinin V. N., Vainovsky P. A., On the interannual variability of the most intense sources and sinks of CO2 in the ocean based on observational data, Hydrometeorology and Ecology, 2022, No. 66, pp. 51–70 (in Russian), DOI: 10.33933/2713-3001-2022-66-51-70.
  16. Malinin V. N., Shmakova V. Yu., Variability of the energy-active ocean zones in North Atlantic, Fundamental and applied climatology, 2018, No. 4, pp. 55–70 (in Russian), DOI: 10.21513/2410-8758-2018-4-55-70.
  17. Nesterov E. S., Severoatlanticheskoe kolebanie: atmosfera i okean (North Atlantic oscillation: atmosphere and ocean), Moscow: Triada, 2013, 144 p. (in Russian).
  18. Polonsky A. B., Sukhonos P. A., North Atlantic oscillation and upper layer heat balance in the North Atlantic, Fundamental and applied climatology, 2019, No. 4, pp. 67–100 (in Russian), DOI: 10.21513/0207-2564-2019-4-67-100.
  19. Smirnov N. P., Vorobyov V. N., Drozdov V. V., Cyclonic center of atmospheric and Ocean action in the North Atlantic, Scientific Notes of the Russian State University, 2010, No. 15, pp. 117–134 (in Russian).
  20. Stepanov V. N., Atlantic heat and water transfer according to ocean models and observations, Proc. Hydrometeorological Research Center of the Russian Federation, 2017, No. 364, pp. 104–130 (in Russian).
  21. Fedorov A. M., Kubryakova A. A., Belonenko T. V., Long-term changes in large-scale circulation in the North Atlantic Ocean based on satellite altimetry, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 225–237 (in Russian), DOI: 10.21046/2070-7401-2017-14-7-225-237.
  22. Fedorov A. M., Bashmachnikov I. L., Belonenko T. V., Localization of areas of deep convection in the nordic seas, the Labrador Sea and the Irminger Sea, Vestnik of Saint Petersburg University. Earth Sciences, 2018, Vol. 63, No. 3, pp. 345–362 (in Russian), https://doi.org/10.21638/spbu07.2018.306.
  23. Yakovleva D. A., Bashmachnikov I. L., Interannual variations of heat and freshwater contents in the cold water dome of the Labrador Sea, Vestnik of Saint Petersburg University. Earth Sciences, 2019, Issue 64, No. 1, pp. 136–158 (in Russian), DOI: 10.21638/spbu07.2019.108.
  24. Androsov A., Rubino A., Romeiser R. et al., Open-ocean convection in the Greenland Sea: Preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models, Meteorologische Zeitschrift, 2005, Issue 14, No. 6, pp. 693–702 (in Russian), https://doi. org/10.1127/0941-2948/2005/0078.
  25. Årthun M. A., Eldevik T., Smedsdrud L. H. et al., Quantifying the influence of Atlantic heat on the Barents Sea ice variability and retreat, J. Climate, 2012, No. 25, pp. 4736–4743, DOI: 10.1175/JCLI-D-11-00466.1.
  26. Asbjørnsen H., Årthun M., Skagseth Ø., Eldevik T., Mechanisms underlying recent Arctic Atlantification, Geophysical Research Letters, 2020, Vol. 47. Article e2020GL088036, https://doi.org/10.1029/2020GL088036.
  27. Bacon S., The dense overflows from the Nordic Seas into the deep North Atlantic, ICES Symp. 100 Years of Science under ICES, 2002, pp. 148–155, DOI: 10.17895/ices.pub.8741.
  28. Bailey D. A., Rhines P. B., Hakkinen S., Formation and pathways of North Atlantic deep water in a coupled ice – ocean model of the Arctic – North Atlantic Oceans, Climate Dynamics, 2005, Vol. 25(5), pp. 497–516, DOI 10.1007/s00382-005-0050-3/.
  29. Bashmachnikov I. L., Fedorov A. M., Golubkin P. A. et al., Mechanisms of interannual variability of deep convection in the Greenland Sea, Deep Sea Research Part I: Oceanographic Research Papers, 2021, Vol. 174(128), Article 103557, 50 p., https://doi.org/10.1016/j.dsr.2021.103557.
  30. Binns P. E., Atmosphere – ocean interactions in the Greenland Sea during solar cycles 23–24, 2002–2011, Ocean Science Discussions, 2015, Vol. 12, Issue 1, pp. 103–134, https://doi.org/10.5194/osd-12-103-2015.
  31. Broecker W. S., The great ocean conveyor, Oceanography, 1991, Vol. 4, No. 2, pp. 79–89, https://doi.org/10.5670/oceanog.191.07.
  32. Buckley M. W., Marshall J., Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Reviews of Geophysics, 2016, Vol. 54, Issue 1, pp. 5–63, https://doi.org/10.1002/2015RG000493.
  33. Centurioni L. R., Gould W. J., Winter conditions in the Irminger Sea observed with profiling floats, J. Marine Research, 2004, Vol. 62, No. 3, pp. 313–336, https://doi.org/10.1357/0022240041446209.
  34. Chafik L., Nilsen J. E., Dangendorf S. et al., North Atlantic Ocean circulation and decadal sea level change during the altimetry era, Scientific Reports, 2019, Vol. 9, Article 1041, https://doi.org/10.1038/s41598-018-37603-6.
  35. de Jong M. F., de Steur L., Strong winter cooling of the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST, Geophysical Research Letters, 2016, Vol. 43, Issue 13, pp. 1717–1734, http://doi.org/10.1002/2016GL069596.
  36. Dickson R., Brown J., The production of North–Atlantic deep waters – sources, rates, and pathways, J. Geophysical Research: Oceans, 1994, Vol. 99, pp. 12319–12341, DOI: 10.1029/94JC00530.
  37. Dong S., Baringer M. O., Goni G. J., Slow Down of the Gulf Stream during 1993–2016, Scientific Reports, 2019, Vol. 9, Article 6672, 10 p., https://doi.org/10.1038/s41598-019-42820-8.
  38. Ezer T., Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated variations for 1935–2012, Global and Planetary Change, 2015, Vol. 129, pp. 23–36, DOI: 10.1016/j.gloplacha.2015.03.002.
  39. Frajka-Williams E., Ansorge I. J., Baehr J. et al., Atlantic Meridional Overturning Circulation: Observed transport and variability, Frontiers in Marine Science, 2019, Vol. 6, Article 260, 18 p., DOI: 10.3389/fmars.2019.00260.
  40. Frajka-Williams E., Moat B. I., Smeed D. A. et al., Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1), NERC EDS British Oceanographic Data Centre NOC, 2021, DOI: 10.5285/cc1e34b3-3385-662b-e053-6c86abc03444.
  41. Higginson S., Thompson K. R., Huang J. et al., The mean surface circulation of the North Atlantic subpolar gyre: A comparison of estimates derived from new gravity and oceanographic measurements, J. Geophysical Research: Oceans, 2011, Vol. 116, Issue C8, https://doi.org/10.1029/2010JC006877.
  42. Ivchenko V. O., Sidorenko D., Danilov S. et al., Can sea surface height be used to estimate oceanic transport variability? Geophysical Research Letters, 2011, Vol. 38, Issue 11, 5 p., DOI: 10.1029/2011GL047387.
  43. Jie C., Yuchao D., Jian W. et al., The sea surface temperature configuration of Greenland Sea-subpolar region of North Atlantic and the summer rainfall anomaly in low-latitude highlands of China, Intern. J. Climatology, 2018, V. 38, Iss. 7, pp. 3082–3089, https://doi.org/10.1002/joc.5484.
  44. Johannessen O. M., Lygre K., Eldevik T., Convective chimneys and plumes in the Northern Greenland Sea, In: The Nordic Seas: An Integrated Perspective: Geophysical Monograph, Drange H., Dokken T., Furevik T. et al. (eds.), Washington, D. C.: Publ. American Geophysical Union, 2013, Vol. 158, pp. 251–272, http://doi.org/10.1029/158GM17.
  45. Kopp R. E., Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophysical Research Letters, 2013, Vol. 40, Issue 15, pp. 3981–3985, https://doi.org/10.1002/grl.50781.
  46. Lavender K. L., Davis R. E., Owens W. B., Observations of open-ocean deep convection in the Labrador Sea from subsurface floats, J. Physical Oceanography, 2002, V. 32, Issue 2, pp. 511–526, https://doi. org/10.1175/1520-0485(2002)0322.0.CO;2.
  47. Lavender K. L., Moret-Fergusen S., Maximenko N. et al., Plastic accumulation in the north Atlantic subtropical gyre, Science, 2010, Vol. 329, Issue 5996, Article  5996, 5 p., DOI: 10.1126/science.1192321.
  48. Levitus S., Antonov J. I., Boyer T. P. et al., World Ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, Geophysical Research Letters, 2012, Vol. 39, Article L10603, 5 p., DOI: 10.1029/2012GL051106.
  49. Marshall J., Schott F., Open-ocean convection: Observations, theory, and models, Reviews of Geophysics, 1999, Vol. 37, Issue 1, pp. 1–64, https://doi.org/10.1029/98RG02739.
  50. Marshall J., Dobson F., Moore K. et al., The Labrador Sea deep convection experiment, Bull. American Meteorological Society, 1998, Vol. 79, Issue 10, pp. 2033–2058, https://doi.org/10.1175/1520-0477(1998)079<2033:TLSDCE>2.0.CO;2.
  51. Marzocchi A., Joël J.-M. Hirschi N. et al., The North Atlantic subpolar circulation in an eddy-resolving global ocean model, J. Marine Systems, 2014, Vol. 142, pp. 126–143, https://doi.org/10.1016/j.jmarsys.2014.10.007.
  52. McCarthy G. D., Smeed D. A., Johns W. E. et al., Measuring the Atlantic meridional overturning circulation at 26N, Progress in Oceanography, 2015, Vol. 130, pp. 91–111, DOI: 10.1016/j.pocean.2014.10.006.
  53. Moore G. W. K., Våge K., Pickart R. S., Renfrew I. A., Decreasing intensity of open–ocean convection in the Greenland and Iceland seas, Nature Climate Change, 2015, Vol. 5, pp. 877–882, https://doi.org/1038/ nclimate2688.
  54. Pickart R. S., Spall M. A., Ribergaard M. H. et al. (2003a), Deep convection in the Irminger Sea forced by the Greenland tip jet, Nature, 2003, Vol. 424(6945), pp. 152–156, DOI: 10.1038/nature01729.
  55. Pickart R. S., Straneo F., Moore G. W. K. (2003b), Is Labrador Sea water formed in the Irminger basin?, Deep Sea Research. Part I. Oceanographic Research Papers, 2003, Vol. 50(1), pp. 23–52, https://doi.org/1016/S0967–0637(02)00134–6.
  56. Polyakov I. V., Pnyushkov A. V., Alkire M. B. et al., Greater role for Atlantic inflows on sea‐ice loss in the Eurasian Basin of the Arctic Ocean., Science, 2017, Vol. 356, No. 6335, pp. 285–291, https://doi.org/10.1126/science.aai8204.
  57. Repschläger J. Garbe-Schönberg D., Weinelt M., Schneider R., Holocene evolution of the North Atlantic subsurface transport, Climate of the Past, 2017, Vol. 13(4), pp. 333–344, DOI: 10.5194/cp-13-333-2017.
  58. Rhein M., Kieke D., Huettl-Kabus S. et al., Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic, Deep Sea Research Part II: Topical Studies in Oceanography, 2011, Vol. 58, No. 17–18, pp. 1819–1832, https://doi.org/10.1016/j.dsr2.2010.10.061.
  59. Rhein M., Kieke D., Steinfeldt R., Advection of North Atlantic deep water from the Labrador Sea to the Southern Hemisphere, J. Geophysical Research, 2015, Vol. 120, No. 4, pp. 2471–2487, DOI: 10.1002/2014JC010605.
  60. Selyuzhenok V., Bashmachnikov I., Ricker R. et al., Sea ice volume variability and water temperature in the Greenland Sea, The Cryosphere, 2020, No. 14, pp. 477–495, https://doi.org/10.5194/tc-14-477-2020.
  61. Srokosz M., Baringer M., Bryden H. et al., Past, present, and future changes in the Atlantic meridionaloverturning circulation, Bull. American Meteorological Society, 2012, Vol. 93, No. 11, pp. 1663–1676, http://dx.doi.org/10.1175/BAMS-D-11-00151.1.
  62. Stramma L., Siedler G., Seasonal changes in the North Atlantic subtropical gyre, J. Geophysical Research, 1988, Vol. 93, Issue C7, pp. 8111–8118, https://doi.org/10.1029/JC093iC07p08111.
  63. Trenberth K. E., Fasullo J. T., Kiehl J., Earth’s global energy budget, Bull. American Meteorological Society, 2009, Vol. 90, No. 3, pp. 311–232, DOI: 10.1175/2008bams2634.1.
  64. Våge K., Pickart R. S., Thierry V. et al., Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008, Nature Geoscience, 2009, No. 2, pp. 67–72, https://doi.org/1038/ngeo382.
  65. Wadhams P., Holfort J., Hansen E. et al., A deep convective chimney in the winter Greenland Sea, Geophysical Research Letters, 2002, Vol. 29, No. 10, pp. 76-1–76-4, https://doi.org/10.1029/2001gl014306.
  66. Zhou S., Miller A. J., Wang J. et al., Trends of NAO and AO and their associations with stratospheric processes, Geophysical Research Letters, 2001, Vol. 28, pp. 4107–4110, DOI: 10.1029/2001GL013660.