Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 97-115
Technology for creating seamless continuous coverage of Russian territory based on Kanopus-V satellites data
A.N. Markov
1 , A.I. Vasilyev
1 , A.V. Krylov
1 , A.A. Mikheev
1 , A.A. Pestryakov
1 , S.V. Romaikin
1 , R.A. Mikhalenkov
1 , I.D. Murashova
1 , A.A. Akimov
1 1 Research Center for Earth Operative Monitoring, Moscow, Russia
Accepted: 19.09.2024
DOI: 10.21046/2070-7401-2024-21-5-97-115
As part of the domestic Earth Remote Sensing (ERS) orbital constellation, the high-resolution Kanopus-V satellites (up to 6 operational satellites) are utilized. These satellites conduct regular surveys of the Russian territory to solve various applied scientific and national economy tasks. This article presents a technology for creating seamless continuous coverage of the entire country based on data from the Kanopus-V satellites, primarily collected from 2018 to 2022. First, an analysis of the archives from the Russian ERS satellite operator was conducted to construct a minimally cloudy, continuous coverage of the Russian Federation territory. Second, standard data processing was carried out, and a buffer of ortho products from Kanopus-V satellite data was generated. Third, the Russian territory was divided into segments using a regular grid with 5×5° cells. Ortho products were selected for each grid cell and seamless continuous coverage was generated using photogrammetric software in interactive mode. Fourth, the resulting mosaic was created, taking into account brightness adjustments. Finally, the features of automatic and interactive quality control during the creation of continuous coverage for individual segments or cells are discussed. Given that the creation of the mosaic based on the ortho products took about a year, the article also notes the distribution of processing time across various technological stages, leveraging available computing resources. In conclusion, further development of this technology is highlighted, with plans to establish regulated annual coverage and increase the degree of automation in its creation.
Keywords: remote sensing of the Earth, spacecraft, Kanopus-V, high spatial resolution, data processing, photogrammetry, seamless continuous coverage, mosaic, territory of the Russian Federation
Full textReferences:
- Vasilyev A. I., Krylov A. V., Pankin A. V., Standard level processing of Resurs-P KShMSA data for automatic generation of seamless continuous coverage, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 18–28 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-18-28.
- Vasilyev A. I., Krylov A. V., Alekseevskiy A. S., Mikheev A. A., Evlashkin M. A., Stream data processing of the Kanopus-V satellite constellation to ensure the formation of basic remote sensing products, Materialy 18-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa“ (18th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 2020, p. 431 (in Russian), DOI: 10.21046/18DZZconf-2020a.
- Vasilyev A. I., Krylov A. V., Meshkov M. V., Pestryakov A. A., Evlashkin M. A. (2022a), Technology of streaming formation for basic remote sensing products according to MSU-MR data of the Meteor-M spacecraft, Distantsionnoe zondirovanie Zemli iz kosmosa v Rossii, 2022, Issue 1, pp. 32–37 (in Russian).
- Vasilyev A. I., Mikheev A. A., Meshkov M. V., Pestryakov A. A. (2022b), Problematic issues of formation for global coverage according to the KMSS data of the Meteor-M spacecraft, Materialy 10-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Aktual’nye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniya Zemli” (10th Intern. Scientific and Technical Conf. “Current problems of creating space systems for remote sensing of the Earth”), 2022, pp. 113–117 (in Russian), https://www.vniiem.ru/ru/uploads/files/conferences/220929/materialy_2022.pdf.
- Vasilyev A. I., Pestryakov A. A., Mikheev A. A., Murashova I. D. (2022c), Features of the formation for a tonally balanced coverage of the global level according to the KMSS data of the Meteor-M spacecraft, Materialy 20-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (20th Intern. Conf. “Current Problems of Remote Sensing of the Earth from Space”), 2022, p. 85 (in Russian), DOI: 10.21046/20DZZconf-2022a.
- Vasilyev A. I., Olshevskiy N. A., Sinyaev P. A., Pestryakov A. A., Features of online delivery technologies for mosaic continuous coatings of Russian remote sensing satellites, Informatsiya i Kosmos, 2024, No 2, pp. 132–140 (in Russian).
- Gorbunov A. V., Slobodskoi I. N., Space complex for operational monitoring of man-made and natural emergencies “Kanopus-V”, Geomatics, 2010, Issue 1, pp. 30–33 (in Russian).
- Kuznetsov A. E., Pobaruev V. I., Poshekhonov V. I., Presnyakov O. A., A software system for information processing from scanner-frame imaging systems SC “Canopus-V“ and “BKA”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 287–300 (in Russian).
- Markov A. N., Vasilyev A. I., Olshevskiy N. A. et al., Access features to the Basic Product Bank geoinformation service resources, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 228–237 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-228-237.
- Markov A. N., Vasilyev A. I., Olshevskiy N. A. et al. (2020a), The maintaining technologies of the basic products bank based on Earth remote sensing data for the tasks of the Russian Federation digital economy, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 79–90 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-79-90.
- Markov A. N., Vasilyev A. I., Krylov A. V. et al. (2020b), Generation of Seamless Continuous Coverages of the Russian Regions Using Resurs-P Very-High Resolution Data, Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2020, Vol. 7, Issue 1, pp. 72–83 (in Russian), DOI: 10.30894/issn2409-0239.2020.7.1.72.83.
- Meshkov M. V., Evlashkin M. A., Vasilyev A. I., Development of a plug-in for the QGIS geographic information system for accessing the resources of the Basic Products Bank Web Service, Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2022, Vol. 9, Issue 3, pp. 13–18 (in Russian), DOI: 10.30894/issn2409-0239.2022.9.3.13.18.
- Plotnikov D. E., Kolbudaev P. A., Zhukov B. S. et al., The collection of multispectral KMSS-M (Meteor-M No. 2) satellite data aimed at quantitative assessment of the Earth surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 276–282 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-276-282.
- Proshin A. A., Loupian E. A., Balashov I. V. et al., Technology of satellite data dynamic block provision to distributed processing systems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 79–93 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-79-93.
- Proshin A. A., Lupyan E. A., Matveev A. M. et al., Organization of KMSS data processing based on the use of a dynamic block data access system, Materialy 19-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (19th Intern. Conf. “Current Problems of Remote Sensing of the Earth from Space”), 2021, p. 107 (in Russian), DOI: 10.21046/19DZZconf-2021a.
- Selin V. A., Markov A. N., Vasilyev A. I., Korshunov A. P., Geoinformation service “Basic Product Bank”, Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2019, Vol. 6, Issue 1, pp. 40–48 (in Russian), DOI: 10.30894/issn2409-0239.2019.6.1.40.48.
- Fedotkin D. I., Borovenskiy E. N., Sysenko D. V. et al., Automatic processing of space imagery in the ground segment of the domestic multi-satellite constellation of remote sensing spacecrafts, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 9–30 (in Russian), DOI: 10.21046/2070-7401-2024-21-3-9-30.
- Aparna N., NRSC Satellite Data Products and Services, User Interaction Meet-2022, 2022, https://www.nrsc.gov.in/sites/default/files/pdf/ebooks/UIM-2022/uim_5.pdf.
- Gillman D. W., Triangulations for Rubber-Sheeting, Auto Carto 7 Conf., 1985, pp. 191–199.
- Howard A. G., Zhu M., Chen B. et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, https://arxiv.org/, 2017, DOI: 10.48550/arXiv.1704.04861.
- Kerschner M., Seamline detection in colour orthoimage mosaicking by use of twin snakes, ISPRS J. Photogrammetry and Remote Sensing, 2001, Issue 56(1), pp. 53–64, DOI: 10.1016/s0924-2716(01)00033-8.
- Kirches G., Brockmann C., Riffler M., Algorithm Theoretical Basis Document. Sentinel-2 Global Mosaics, S2GM-SC2-ATBD-BC, Issue Data: 29-October-2019, Issue: 1.3.1, https://usermanual.readthedocs.io/en/1.1.2/_downloads/5a2d961d53dea1eb1117ec73e4cbff09/S2GM-SC2-ATBD-BC-v1.3.2.pdf.
- Li X., Feng R., Guan X. et al., Remote sensing image mosaicking: Achievements and challenges, IEEE Geoscience and Remote Sensing Magazine, 2019, Vol. 7, No. 4, pp. 8–22, DOI: 10.1109/MGRS.2019.2921780.
- Lowe D. G., Distinctive image features from scaleinvariant keypoints, Intern. J. Computer Vision, 2004, Vol. 60, pp. 91–110, DOI: 10.1023/B:VISI.0000029664.99615.94.
- Wiatr T., Delivering free, seamless, cloudless mosaic images of Europe to the world, EuroGeographics: Data Producer Meeting, 2020, https://eurogeographics.org/app/uploads/2020/10/Session-4-Delivering-free-seamless-cloudless-mosaic-images-BKG.pdf.
- Zhang H., Landsat analysis ready data: algorithms and application demonstrations with deep learning based land cover mapping, 6 th Asia-Oceania Group on Earth Observations (AOGEO) Workshop, 2023, https://conferences.cis.um.edu.mo/AOGEO-workshop-2023.
- Zhou J., Civco D. L., Silander J. A., A wavelet transform method to merge Landsat TM and SPOT Panchromatic data, International J. Remote Sensing, 1998, Issue 19(4), pp. 743–757, DOI: 10.1080/014311698215973.