ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 5, pp. 49-62

Satellite remote sensing systems for trace gas components of the atmosphere

A.A. Tronin 1 , G.M. Nerobelov 1 , M.P. Vasiliev 1 
1 Saint Petersburg Scientific Research Center for Ecological Safety RAS, Saint Petersburg, Russia
Accepted: 26.08.2024
DOI: 10.21046/2070-7401-2024-21-5-49-62
Among the small gas components of the atmosphere, a group of gases and impurities stands out — atmospheric air pollutants: aerosol, nitrogen and sulfur dioxides, formaldehyde and carbon monoxide. Measurement of these pollutants is very important for characterizing environmental and biogeochemical processes in the troposphere and monitoring air quality. In recent decades, a system of remote methods for obtaining information on atmospheric pollution has been being developed on the basis of Earth remote sensing instruments. The review examines the state of technical means of remote sensing for measuring trace gas components of the troposphere. The development of equipment installed on sun-synchronous and geostationary satellites is analyzed and the spectral, spatiotemporal and technical characteristics of the devices are given. The analysis shows that there is currently a trend towards building a three-level observation system, including geostationary satellites, instruments in high sun-synchronous orbits and observations from low-orbiting vehicles, e.g. International Space Station. At the same time, there is a constant increase in spatial resolution of the equipment, but spectral resolution changes little. There is also a significant increase in the speed of information transfer. The results obtained can be used when selecting data sources for monitoring the concentrations of trace gas components of the atmosphere both over large areas and in specific regions of Russia.
Keywords: trace gas components of the atmosphere, atmospheric air pollutants, remote sensing of the Earth, spectrometer
Full text

References:

  1. Bril A. A., Konstantinova A. M., Loupian E. A., Burtsev M. A., Capabilities of IKI-Monitoring shared use center operation with satellite monitoring — based trace gas component data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 85–95, DOI: 10.21046/2070-7401-2023-20-5-85-95.
  2. Buznikov A. A., Academician K. Ya. Kondratiev — outstanding scientist and organizer, Proc. All-Russian scientific conference with international participation “Earth and Space” for the centenary of Academician of the Russian Academy of Sciences K. Ya. Kondratiev, Saint Petersburg: LLC “Monomax”, 2020, pp. 4–13.
  3. Trokhimovsky A. Yu., Korablev O. I., Ivanov Yu. S. et al., Infrared channel of the driada spectrometer for greenhouse gases measurement from space, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 50–60, DOI: 10.21046/2070- 7401-2022-19-6-50-60.
  4. Bovensmann H., Burrows J. P., Buchwitz M. et al., SCIAMACHY — Mission objectives and measurement modes, J. Atmospheric Sciences, 1999, Vol. 56(2), pp. 127–150, DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
  5. Burrows J. P., Hölzle E., Goede A. P. H. et al., SCIAMACHY — Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Acta Astronautica, 1995, Vol. 35, No. 7, pp. 445–541, https://doi.org/10.1016/0094-5765(94)00278-T.
  6. Burrows J. P., Weber M., Buchwitz M. et al., The Global Ozone Monitoring Experiment (GOME): Mission, instrument concept, and first scientific results, J. Atmospheric Sciences, 1999, Vol. 56(2), pp. 151–175, DOI: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.
  7. Burrows J., Borrell P., Platt U., The Remote sensing of tropospheric composition from space, Verlag, Heidelberg: Springer, 2011, 532 p., DOI: 10.1007/978-3-642-14791-3.
  8. Duncan B. N., Prados A. I., Lamsal L. N. et al., Satellite data of atmospheric pollution for U. S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmospheric Environment, 2014, Vol. 94, pp. 647–662, DOI: 10.1016/j.atmosenv.2014.05.061.
  9. Green R., Mahowald N., Ung Ch. et al., The Earth surface mineral dust source investigation: An Earth science imaging spectroscopy mission, 2020 IEEE Aerospace Conference, 2020, pp. 1–15, DOI: 10.1109/AERO47225.2020.9172731.
  10. Haney C., Doelling D. R., Su W. et al., Radiometric Stability Assessment of the DSCOVR EPIC Visible Bands Using MODIS, VIIRS, and Invariant Targets as Independent References, Frontiers in Remote Sensing, 2021, Vol. 2, Article 16, https://doi.org/10.3389/frsen.2021.765913.
  11. Korablev O., Vandaele A. C., Montmessin F. et al., No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations, Nature, 2019, V. 568(7753), pp. 517–520, DOI: 10.1038/s41586-019-1096-4.
  12. Krueger A. J., Heath D. F., Mateer C. L., Variations in the stratospheric ozone field inferred from Nimbus satellite observations, Pure Applied Geophysics, 1973, Vol. 106, pp. 1254–1263, DOI: 10.1007/BF00881077.
  13. Liu C., Hu Q., Zhang C. et al., First Chinese ultraviolet–visible hyperspectral satellite instrument implicating global air quality during the COVID-19 pandemic in early 2020, Light: Science and Applications, 2022, Vol. 11, Article 28, https://doi.org/10.1038/s41377-022-00722-x.
  14. Martin R. V., Satellite remote sensing of surface air quality, Atmospheric Environment, 2008, Vol. 42, pp. 7823–7843, DOI: 10.1016/j.atmosenv.2008.07.018.
  15. Rahman M. M., Recommendations on the measurement techniques of atmospheric pollutants from in situ and satellite observations: a review, Arabian J. Geosciences, 2023, Vol. 16, Article 326, DOI: 10.1007/s12517-023-11410-4.
  16. Zhang C., Liu C., Chan K. L. et al., First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite, Light: Science and Applications, 2020, Vol. 9, Article 66, https://doi.org/10.1038/s41377-020-0306-z.
  17. Zhao M., Si F., Zhou H. et al., Pre-launch radiometric characterization of EMI-2 on the GaoFen-5 series of satellites, Remote Sensing, 2021, Vol. 13, Article 2843, https://doi.org/10.3390/rs13142843.