Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 301-307
New data products on nitrogen dioxide distribution with consideration of wind conditions
A.A. Bril
1 , E.A. Loupian
1 , А.М. Konstantinova
1 , Yu.S. Krasheninnikova
1 , I.A. Uvarov
1 1 Space Research Institute RAS, Moscow, Russia
Accepted: 28.08.2024
DOI: 10.21046/2070-7401-2024-21-4-301-307
In recent decades, satellite monitoring systems for trace gases in the atmosphere have been actively developed. Based on the data they collect, a significant number of various information products are currently being created, which are used to address a wide range of scientific and applied tasks, including monitoring and controlling major pollution sources, analyzing anthropogenic impacts on various territories, and more. To solve many such tasks, it is necessary to consider the conditions under which trace gases observation is conducted, primarily meteorological conditions. Therefore, there is a need to create various comprehensive information products that take into account both the data obtained from satellite observations of trace gases and the meteorological conditions under which the observations were made. The paper is dedicated to describing new information products of this class, developed at the Space Research Institute of the Russian Academy of Sciences and available for use in the CKP “IKI-Monitoring” (http://ckp.geosmis.ru/). These products allow analyzing information on multi-year average concentration of nitrogen dioxide taking into account local “wind conditions” (wind speed in the observation area). They are based on the data on nitrogen dioxide concentration in the troposphere reconstructed from observations by the TROPOMI instrument (Sentinel 5P satellite). The paper briefly describes the technology for constructing the discussed products, possible areas of their application, and the means of accessing the archives of these products and tools for conducting analysis using the Vega-Science system (http://sci-vega.ru/).
Keywords: remote sensing, trace gases, nitrogen dioxide, monitoring major pollution sources, multi-year satellite observations, air quality, atmospheric pollution, composite imaging technology
Full textReferences:
- Bril A. A., Konstantinova A. M., Loupian E. A., Burtsev M. A., Capabilities of IKI Monitoring Shared Use Center operation with satellite monitoring-based trace gas components data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 85–95 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-85-95.
- Konstantinova A. M., Balashov I. V., Kashnitskii A. V. et al., Unified technology for remote monitoring of natural and anthropogenic objects, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 41–52 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-41-52.
- Konstantinova A. M., Bril A. A., Loupian E. A. et al., Abilities of object monitoring technology for analyzing nitrogen dioxide concentrations in areas where major sources of pollutionare are located, Vychislitel’nye tekhnologii, 2024, Vol. 29, No. 3, pp. 92–102 (in Russian), DOI: 10.25743/ICT.2024.29.3.008.
- Loupian E. A., Proshin A. A., Burtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
- Loupian E. A., Proshin A. A., Bourtsev M. A. et al., Vega-Science system: design features, main capabilities and usage experience, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 9–31 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-9-31.
- Proshin A. A., Loupian E. A., Balashov I. V. et al., Unified satellite data archive management platform for remote monitoring systems development, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 9–27 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-9-27.
- Sadovsky I. N., Pashinov E. V., Sazonov D. S., Analysis of the possibility to calculate atmospheric greenhouse gas balance elements using modern satellite remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 117–128 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-117-128.
- Silaeva P., Silaev A. V., Peculiarities of dispersion of nitrogen dioxide emissions by the energy complex enterprises and their impact on the population of megapolises, Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost’ zhiznedeyatel’nosti, 2018, Vol. 26, No. 1, pp. 63–72 (in Russian), DOI 10.22363/2313-2310-2018-26-1-63-72.
- Tronin A. A., Kritsuk S. G., Kiselev A. V., Estimation of multiyear changes in nitrogen oxide concentrations over Russia from satellite measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 259–265 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-259-265.
- Beirle S., Boersma K. F., Platt U. et al., Megacity emissions and lifetimes of Nitrogen Oxides probed from space, Science, 2011, Vol. 333, No. 6050, pp. 1737–1739, DOI: 10.1126/science.1207824.
- Copernicus Sentinel 5P data products, TROPOMI Level 2 Nitrogen Dioxide total column products, Version 02 (2021b), European Space Agency, 2021, https://doi.org/10.5270/S5P-9bnp8q8.
- Kim J., Ahn M. H., Kim J. H. et al., New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS), Bull. American Meteorological Society, 2020, Vol. 101(1), pp. E1–E22, DOI: 10.1175/BAMS-D-18-0013.1.
- Lamsal L., Martin R., Donkelaar A. et al., Ground-level Nitrogen Dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument, J. Geophysical Research Atmospheres, 2008, Vol. 113, Issue D16, Article D16308, DOI: 10.1029/2007JD009235.
- NCEP GDAS/FNL 0.25 Degree global tropospheric analyses and forecast grids, National Centers for Environmental Prediction/National Weather Service/NOAA/U. S., 2015. DOI: 10.5065/D65Q4T4Z.
- Qu Z., Henze D. K., Cooper O. R., Neu J. L., Improving NO2 and ozone simulations through global NOx emission inversions, Atmospheric Chemistry and Physics, 2020, Vol. 20, Issue 21, pp. 13109–13130, https://doi.org/10.5194/acp-20-13109-2020.
- Richter A., Burrows J. P., Nüss H. et al., Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 2005, Vol. 437, No. 7055, pp. 129–132, DOI: 10.1038/nature04092.
- Stratoulias D., Nuthammachot N., Dejchanchaiwong R. et al., Recent developments in satellite remote sensing for air pollution surveillance in support of sustainable development goals, Remote Sensing, 2024, No. 16(16), Article 2932, https://doi.org/10.3390/rs16162932.
- United Nations Environment Programme: Guide on ambient air quality legislation — Air pollution series, United Nations Environment Programme, 2023, 105 p., https://wedocs.unep.org/20.500.11822/42536.