ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 237-250

The influence of hydrodynamic processes on the distribution of Vistula River waters in the Gulf of Gdansk as seen in remote sensing data

M.I. Mityagina 1 , O.Yu. Lavrova 1 , P.D. Zhadanova 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 05.08.2024
DOI: 10.21046/2070-7401-2024-21-4-237-250
The article presents the results of a study aimed at clarifying and supplementing currently existing ideas about the nature of the distribution of the Vistula waters rich in suspended and organic matter in the Gulf of Gdansk. The experimental basis for identifying, reconstructing, and further analyzing the spatiotemporal characteristics of the distribution of the Vistula waters at its confluence with the Gulf of Gdansk was high spatial resolution data in the visible range from the MSI (Multispectral Instrument) of Sentinel 2 and OLI/OLI-2 (Operational Land Imager) of Landsat-8, -9 satellites obtained over a two-year observation period from May 1, 2022 to April 30, 2024. To restore a complete picture of the development of hydrodynamic processes in the bay, we used data from satellite synthetic aperture radars C-SAR of satellites Sentinel 1A, -1B obtained over the same period. We considered various scenarios for the distribution of Vistula River waters in the Gulf of Gdansk, which we identified on satellite images. The role of mesoscale and small-scale vortex structures with a characteristic horizontal scale of 5–20 km, developing in the Gulf of Gdansk, has been established as one of the main factors controlling the formation of areas of distribution of river waters and the transport of suspended matter, along with the near-shore wind and along-shore currents. The necessity of taking into account the contribution of hydrodynamic processes in the bay, primarily meso- and submesoscale eddies, which are capable of transporting water and impurities of various nature contained in it over long distances, is substantiated for a reliable assessment of the area of distribution of river waters. The main contribution to transporting suspended matter entering the Gulf of Gdansk with river waters is from vortex dipoles developing in the bay. Further, we emphasized remote sensing as a tool for obtaining detailed information about the spatiotemporal distribution of vortex structures in areas of interest.
Keywords: satellite remote sensing, eutrophication, river plumes, Vistula River, Baltic Sea, vortical processes in the sea, eddy dipole, suspended matter
Full text

References:

  1. Ginzburg A. I., Bulycheva E. V., Kostianoy A. G. et al., Vortex dynamics in the southeastern Baltic Sea from satellite radar data, Oceanology, 2015, Vol. 55, pp. 805–813, https://doi.org/10.1134/S0001437015060065.
  2. Ginzburg A. I., Krek E. V., Kostianoy A. G. et al., Evolution of mesoscale anticyclonic vortex and vortex dipoles/multipoles on its base in the South-Eastern Baltic (satellite information: May–July 2015), J. Oceanological Research, 2017, Vol. 45, No. 1, pp. 10–22 (in Russian), DOI: 10.29006/1564-2291.JOR-2017.45(1).
  3. Zavialov P. O., Makkaveev P. N., Konovalov B. V. et al., Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers of the Russian coast of the Black Sea, Oceanology, 2014, Vol. 54, pp. 265–280, https://doi.org/10.1134/S0001437014030151.
  4. Kopelevich O., Vazyulya S., Sheberstov S. et al., Suspended matter in the surface layer of the Southeastern Baltic from satellite data, Oceanology, 2016, Vol. 56(1), pp. 46–54, DOI: 10.1134/S0001437016010069.
  5. Krayushkin E. V., Lavrova O. Yu., K. R. Nazirova et al., formation and propagation of an eddy dipole at Cape Taran in the southeast Baltic Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 214–221 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-214-221.
  6. Krayushkin E. V., Lavrova O. Yu., Nazirova K. R. et al., Three-dimensional structure and dynamics of waters in coastal eddy dipoles in the southeastern Baltic Sea: Results of concurrent satellite and field measurements in summer 2021, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 265–279 (in Russian), DOI: 10.21046/2070-7401-2022-19-6-265-279.
  7. Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Satellite methods for detecting and monitoring marine zones of ecological risk, Moscow: IKI RAS, 2016, 334 p. (in Russian).
  8. Lavrova O.Yu., Mityagina M. I., Uvarov I. A. et al., Current capabilities and experience of using the See the Sea information system for studying and monitoring phenomena and processes on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 266–287 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-266-287.
  9. Lavrova O. Yu., Nazirova K. R., Alferyeva Ya. O. et al., Comparison of plume parameters of the Sulak and Terek rivers based on satellite data and in situ measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 264–283 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-264-283.
  10. Nazirova K. R., Lavrova O. Yu., Krayushkin E. V. et al., Features of river plume parameter determination by in situ and remote sensing methods, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 227–243 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-227-243.
  11. Nazirova K. R., Lavrova O. Yu., Alferyeva Ya. O. et al., Spatiotemporal plume variability of Terek and Sulak rivers from satellite data and concurrent in situ measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 285–303 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-285-303.
  12. Osadchiev A. A., Rechnye plyumy (River plumes), Moscow: Nauchnyi mir, 2021, 285 p. (in Russian).
  13. Raschety i prognozy gidrologicheskih harakteristik: Mezhduvedomstvennyj sbornik nauchnyh trudov (Calculations and forecasts of hydrological characteristics: Interdepartmental collection of scientific papers), Leningrad: LGMI, 1989, Vol. 103, 175 p.
  14. Uvarov I. A., Khalikova O. A., Balashov I. V., Burtsev M. A., Loupian E. A., Matveev A. M., Platonov A. E., Proshin A. A., Tolpin V. A., Krasheninnikova Yu. S., Meteorological data management in framework of the satellite monitoring information systems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 30–45 (in Russian).
  15. Ayad M., Li J., Holt B. et al., Analysis and classification of stormwater and wastewater runoff from the Tijuana River using remote sensing imagery, Frontiers in Environmental Science, 2020, Vol. 8, https://doi.org/10.3389/fenvs.2020.599030.
  16. Bojanowski R., Trace elements and the Vistula — the impact on their distribution in the Gulf of Gdansk, Studia i Materialy Oceanologiczne, 1981, Vol. 34, pp. 53–92 (in Polish).
  17. Constantin S., Doxaran D., Constantinescu S., Estimation of water turbidity and analysis of its spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data, Continental Shelf Research, 2016, Vol. 112, pp. 14–30, https://doi.org/10.1016/j.csr.2015.11.009.
  18. Cyberska B., Krzyminski W., Extension of the Vistula River waters in the Gulf of Gdansk, Proc. 16 th Conf. Baltic Oceanographers, 1988, pp. 290–305.
  19. Cyberska B., Trzosinska A., Environmental conditions in the Gulf of Gdansk during the last decade, 1974–1983, Proc. 14 th Conf. Baltic Oceanographers, 1984, pp. 490–509.
  20. Devlin M. J., Petus C., da Silva E. et al., Water quality and river plume monitoring in the Great Barrier Reef: An overview of methods based on ocean colour satellite data, Remote Sensing, 2015, Vol. 7, pp. 12909–12941, https://doi.org/10.3390/rs71012909.
  21. Doxaran D., Froidefond J.-M., Castaing P. et al., Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data, Estuarine, Coastal and Shelf Science, 2009, Vol. 81. pp. 321–332, https://doi.org/10.1016/j.ecss.2008.11.013.
  22. Grelowski A., Wojewodzki T., The impact of the Vistula river on the hydrological conditions in the Gulf of Gdansk in 1994, Bull. Sea Fisheries Institute, 1996, Vol. 137, No. 1, pp. 23–33.
  23. Gurova E., Chubarenko B., Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic, Oceanologia, 2012, Vol. 54, No. 4, pp. 631–654, https://doi.org/10.5697/oc.54-4.631.
  24. Gustafsson B. G., Schenk F., Blenckner T., Reconstructing the development of Baltic Sea eutrophication 1850–2006, AMBIO: J. Human Environment, 2012, Vol. 41, pp. 534–548, https://doi.org/10.1007/s13280-012-0318-x.
  25. HELCOM (2004), The fourth Baltic Sea pollution load compilation (PLC-4), Baltic Sea Environment Proc., 2004. No. 93, 188 p.
  26. Kostianoy A. G., Lebedev S. A., Solovyov D. M. et al., On river plumes along the Turkish coast of the Black Sea, Ecologica Montenegrina, 2019, Vol. 25, pp. 63–78, DOI: 10.37828/em.2019.25.7.
  27. Kowalik Z., Currents, The Gulf of Gdansk, Wroclaw: Wyd. Geol., 1990, pp. 140–153.
  28. Kowalik Z., Wroblewski A., Steady wind-driven currents in the Gulf of Gdansk, Acta Geophysica Polonica, 1971, Vol. 19, No. 2, pp. 111–125 (in Polish).
  29. Krezel A., Cyberski J., Influence of the Vistula River on suspended matter content in the Gulf of Gdansk waters, Studia i Materialy Oceanologiczne, 1993, Vol. 64, pp. 27–39.
  30. Lavrova O. Yu., Soloviev D. M., Mityagina M. I. et al., Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data, Proc. SPIE: Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2015, Vol. 9638, DOI: 10.1117/12.2193905.
  31. Lavrova O., Krayushkin E., Golenko M. et al. (2016a), Effect of wind and hydrographic conditions on the transport of vistula lagoon waters into the Baltic Sea: Results of a combined experiment, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, Issue 11, pp. 5193–5201, DOI: 10.1109/JSTARS.2016.2580602.
  32. Lavrova O. Y., Soloviev D. M., Strochkov M. A. et al. (2016b), River plumes investigation using Sentinel 2A MSI and Landsat-8 OLI data, Proc. SPIE: Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2016, Vol. 9999, Article 99990G, https://doi.org/10.1117/12.2241312.
  33. Lavrova O. Yu., Krayushkin E. V., Nazirova K. R. et al., Vortex structures in the Southeastern Baltic Sea: satellite observations and concurrent measurements, Proc. SPIE: Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2018, Vol. 10784, Article 1078404, DOI: 10.1117/12.2325463.
  34. Majewski A., Hydrological characteristics of the Polish coast estuarine waters, Prace Państw. Instyt. Hydrol.-Meteorol., 1972, Vol. 105, pp. 3–40 (in Polish).
  35. Matciak M., Nowacki J., The Vistula River discharge front–surface observations, Oceanologia, 1995, Vol. 37, No. 1, pp. 75–88.
  36. Nechad B., Ruddick K., Schroeder T. et al., CoastColour Round Robin datasets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth System Science Data, 2015, Vol. 7, No. 7, pp. 319–348, https://doi.org/10.5194/essd-7-319-2015.
  37. Nechad B., Dogliotti A., Ruddick K. G. et al., Particulate backscattering retrieval from remotely-sensed turbidity in various coastal and riverine turbid waters, Proc. ESA Living Planet Symp., 2016, Vol. 740, Article 419.
  38. Osadchiev A. A., Sedakov R. O., Spreading dynamics of small river plumes off the northeastern coast of the Black Sea observed by Landsat-8 and Sentinel 2, Remote Sensing of Environment, 2019, V. 221, pp. 522–533, DOI: 10.1016/j.rse.2018.11.043.
  39. Ostrowska M., Darecki M., Krezel A. et al., Practical applicability and preliminary results of the Baltic environmental satellite remote sensing system (SatBaltyk), Polish Maritime Research, 2015, Vol. 22, No. 3, pp. 43–49, https://doi.org/10.1515/pomr-2015-0055.
  40. Ostrowska M., Ficek D., Stoltmann D. et al., Ten years of remote sensing and analyses of the Baltic Sea primary production (2010–2019), Remote Sensing Applications: Society and Environment, 2022, Vol. 26, Article 100715, https://doi.org/10.1016/j.rsase.2022.100715.
  41. The Gulf of Gdansk, Majewski A. (ed.), Wroclaw: Wyd. Geol., 1990, 502 p. (in Polish).
  42. Zajaczkowski M., Darecki M., Szczucinski W., Report on the development of the Vistula river plume in the coastal waters of the Gulf of Gdansk during the May 2010 flood, Oceanologia, 2010, Vol. 52, No. 2, pp. 311–317.