ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 284-297

Regional features of snow cover disappearance in Siberia under fast Arctic warming

E.V. Varlamova 1 , V.S. Solovyev 1 
1 Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
Accepted: 05.08.2024
DOI: 10.21046/2070-7401-2024-21-4-284-297
Snow cover is one of the most sensitive indicators of climate change. Under warming conditions in the Arctic, the duration of snow cover is decreasing, mainly due to its earlier melting. The timing of snow cover melting, in turn, has a significant impact on vegetation ecosystems. The spatial and temporal distributions and variations of snow cover and surface air temperature characteristics in Siberia were drawn on data from the ERA5-Land reanalysis, the network of meteorological stations of Roshydromet (1982–2022) and the MODIS radiometer (2000–2022). It is shown that under conditions of rapid warming in the Arctic, there is a tendency of earlier snowmelt. In the Polar region, the snow cover has begun to melt earlier by 14±4 days, with a trend of –0.34±0.1 days/year; similar indicators in the rest of Siberia (south of the Polar Circle) are 9±3 days and –0.22±0.08 days/year, respectively. During the period 1982–2022, mean April-June surface air temperature increased 4.6±1 °C (trend 0.11±0.03 °C/year) in the Polar region and 2.8±0.8 °C (trend 0.07±0.02 °C/year) south of the Polar Circle. The region with the highest values of early snowmelt and air temperature rise trends (–0.37±0.1 days/year and 0.12±0.03 °C/year) was found in the north of the Siberian snowmelt trend map; these values are remarkably higher than in the rest of Siberia. The observed changes in snow cover characteristics are due to the noticeable influence of the Arctic amplification and climate-geographic features of Siberia.
Keywords: snow cover, snow disappearance, Arctic amplification, Siberia, ERA5-Land, MODIS
Full text

References:

  1. Alekseev G. V., Development and amplification of global warming in the Arctic, Fundamental and Applied Climatology, 2015, Vol. 1, pp. 11–26 (in Russian).
  2. Alekseev G. V., Radionov V. F., Aleksandrov E. I., Ivanov N. E., Kharlanenkova N. E., Climate change in the Arctic and the northern polar region, Arctic and Antarctic Research, 2010, Vol. 84, No. 1, pp. 67–80 (in Russian).
  3. Alekseev G. V., Kuzmina S. I., Bobilev L. P. et al., Influence of the atmospheric heat and moisture transport on summer warming in the Arctic, Arctic and Antarctic Research, 2017, No. 3, pp. 67–77 (in Russian), DOI: 10.30758/0555-2648-2017-0-3-67-77.
  4. Alekseev G. V., Kharlanenkova N. E., Vyazilova A. E., Arctic amplification: the role of interlatitudinal exchange in the atmosphere, Fundamental and Applied Climatology, 2023, Vol. 9, No. 1, pp. 13–32 (in Russian), DOI: 10.21513/2410-8758-2023-1-13-32.
  5. Borzenkova I. I., Ershova A. A., Zhiltsova E. L., Shapovalova K. O., Arctic sea ice in the light of current and past climate changes, Ice and Snow, 2021, Vol. 61, No. 4, pp. 533–546 (in Russian), DOI: 10.31857/S2076673421040106.
  6. Bulygina O. N., Razuvaev V. N., Aleksandrova T. M., Opisanie massiva dannykh “Kharakteristiki snezhnogo pokrova na meteorologicheskikh stantsiyakh Rossii i byvshego SSSR” (Description of the data set “Characteristics of snow cover at meteorological stations in Russia and the former USSR”), Certificate of state registration of the database No. 2014621201 (RU), Reg. 26.08.2014 (in Russian).
  7. Bykov N. I., Popov E. S., Nablyudeniya za dinamikoi snezhnogo pokrova v OOPT Altae-Sayanskogo ehkoregiona, metodicheskoe rukovodstvo (Observations of snow cover dynamics in protected areas of the Altai-Sayan Ecoregion), Krasnoyarsk, 2011, 64 p. (in Russian).
  8. Zhilina I. Yu., Warming in the Arctic: opportunities and risks, Economic and Social Problems of Russia, Moscow, 2021, No. 1, pp. 66–87 (in Russian), DOI: 10.31249/espr/2021.01.04.
  9. Climate, National Atlas of Russia, Vol. 2, Nature. Ecology, Moscow: Roskartografiya, 2007, pp. 146–184 (in Russian).
  10. Latonin M. M., Bashmachnikov I. L., Bobylev L. P., The Arctic amplification phenomenon and its driving mechanisms, Fundamentalnaya i Prikladnaya Gidrofizika, 2020, Vol. 13, No. 3, pp. 3–19 (in Russian), DOI: 10.7868/S2073667320030016.
  11. Popova V. V., Shiryaeva A. V., Morozova P. A., Changes in the snow depth characteristics in the territory of Russia in 1950–2013: The regional features and connection with the global warming, Earth’s cryosphere, 2018, Vol. 22, No. 4, pp. 65–75 (in Russian), DOI: 10.21782/KZ1560-7496-2018-4(65-75).
  12. Serykh I. V., Tolstikov A. V., Climate change in the western part of the Russian Arctic in 1980–2021. P. 2. Soil temperature, snow, humidity, Arctic and Antarctic Research, 2022, Vol. 68, No. 4, pp. 352–369 (in Russian), DOI: 10.30758/0555-2648-2022-68-4-352-369.
  13. Titkova T. B., Vinogradova V. V., Snow occurrence time on the Russia’s territory in the early 21st century (from satellite data), Ice and Snow, 2017, Vol. 57, No. 1, pp. 25–33 (in Russian), DOI: 10.15356/2076-6734-2017-1-25-33.
  14. Biancamaria S., Cazenave A., Mognard N. M. et al., Satellite-based high latitude snow volume trend, variability and contribution to sea level over 1989/2006, Global and Planetary Change, 2011, Vol. 75, No. 3, pp. 99–107, DOI: 10.1016/j.gloplacha.2010.10.011.
  15. Brown R. D., Robinson D. A., Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 2011, Vol. 5, No. 1, pp. 219–229, DOI: 10.5194/tc-5-219-2011.
  16. Brown R., Derksen C., Wang L., A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008, J. Geophysical Research: Atmospheres, 2010, Vol. 115, Issue D16, Article D16111, DOI: 10.1029/2010JD013975.
  17. Burgass M. J., Milner-Gulland E. J., Stewart-Lowndes J. S. et al., A pan-Arctic assessment of the status of marine social-ecological systems, Regional Environmental Change, 2019, Vol. 19, No. 1, pp. 293–308, DOI: 10.1007/s10113-018-1395-6.
  18. Chen X., Yang Y., Ma Y., Li H., Distribution and attribution of terrestrial snow cover phenology changes over the Northern Hemisphere during 2001–2020, Remote Sensing, 2021, Vol. 13, No. 9, Article 1843, DOI: 10.3390/rs13091843.
  19. Cohen J. L., Furtado J. C., Barlow M. A. et al., Arctic warming, increasing snow cover and widespread boreal winter cooling, Environmental Research Letters, 2012, Vol. 7, No. 1, Article 014007, DOI: 10.1088/1748-9326/7/1/014007.
  20. Cohen J., Zhang X., Francis J. et al., Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather, Nature Climate Change, 2020, Vol. 10, No. 1, pp. 20–29, DOI: 10.1038/s41558-019-0662-y.
  21. Collins W. D., Bitz C. M., Blackmon M. L. et al., The Community Climate System Model Version 3 (CCSM3), J. Climate, 2006, Vol. 19, Issue 11, pp. 2122–2143, DOI: 10.1175/JCLI3761.1.
  22. Derksen C., Brown R., Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections, Geophysical Research Letters, 2012, Vol. 39, Issue 19, Article L19504, DOI: 10.1029/2012GL053387.
  23. Déry S. J., Brown R. D., Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback, Geophysical Research Letters, 2007, Vol. 34, Issue 22, Article L22504, DOI: 10.1029/2007GL031474.
  24. Dunn R. J. H., Aldred F., Gobron N. et al., Global climate, Bull. American Meteorological Society, 2021, Vol. 102, No. 8, pp. S11–S142, DOI: 10.1175/BAMS-D-21-0098.1.
  25. Francis J. A., Vavrus S. J., Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophysical Research Letters, 2012, Vol. 39, Issue 6, Article L06801, DOI: 10.1029/2012GL051000.
  26. Ghatak D., Deser C., Frei A. et al., Simulated Siberian snow cover response to observed Arctic sea ice loss, 1979–2008, J. Geophysical Research: Atmospheres, 2012, Vol. 117, Issue D23, Article D23108, DOI: 10.1029/2012JD018047.
  27. Hall D. K., Riggs G. A. (2021a), MODIS/Terra Snow Cover Daily L3 Global 0.05Deg CMG, Version 61, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 2024, DOI: 10.5067/MODIS/MOD10C1.061.
  28. Hall D. K., Riggs G. A. (2021b), MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 61, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 2024, DOI: 10.5067/MODIS/MOD10A1.061.
  29. Hassol S. J., Impacts of a warming Arctic: Arctic climate impact assessment, Cambridge University Press, 2004, 139 p.
  30. Holland M. M., Bitz C. M., Polar Amplification of climate change in the coupled Model Intercomparison Project, Climate Dynamics, 2003, Vol. 21, No 3, pp. 221–232, DOI: 10.1007/s00382-003-0332-6.
  31. Johannessen O. M., Bengtsson L., Miles M. W. et al., Arctic climate change: observed and modelled temperature and sea-ice variability, Tellus A, 2004, Vol. 56, No. 4, pp. 328–341, DOI: 10.1111/j.1600-0870.2004.00060.x.
  32. Kendall M. G., Rank Correlation Methods, 4 th ed., London: Charles Griffin, 1975, 160 p.
  33. Mann H. B., Non-Parametric Tests against Trend, Econometrica, 1945, Vol. 13, pp. 245–259, DOI: 10.2307/1907187.
  34. Matyukhina A. A., Voropay N. N., Long-term dynamics of snow cover in the Baikal region, IOP Conf. Series: Earth and Environmental Science, 2020, Vol. 611, No 1, Article 012007, DOI: 10.1088/1755-1315/611/1/012007.
  35. Mudryk L., Chereque A. E., Derksen C. et al., Arctic report card 2022: Terrestrial snow cover, NOAA technical report OAR ARC, 2022, No. 22-03, DOI: 10.25923/yxs5-6c72.
  36. Muñoz-Sabater J., Dutra E., Agustí-Panareda A. et al., ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth System Science Data, 2021, Vol. 13, No. 9, pp. 4349–4383, DOI: 10.5194/essd-13-4349-2021.
  37. Overland J. E., Spillane M. C., Percival D. B. et al., Seasonal and regional variation of pan-arctic surface air temperature over the instrumental record, J. Climate, 2004, Vol. 17, Issue 17, pp. 3263–3282, DOI: 10.1175/1520-0442(2004)017<3263:SARVOP>2.0.CO;2.
  38. Park H., Walsh J. E., Kim Y. et al., The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths, Polar Science, 2013, Vol. 7, No. 2, pp. 174–187, DOI: 10.1016/j.polar.2012.10.002.
  39. Park H. S., Kim S. J., Stewart A. L. et al., Mid-Holocene Northern Hemisphere warming driven by Arctic amplification, Science Advances, 2019, Vol. 5, Issue 12, Article eaax8203, DOI: 10.1126/sciadv.aax8203.
  40. Rantanen M., Karpechko A. Y., Lipponen A. et al., The Arctic has warmed nearly four times faster than the globe since 1979, Communications Earth and Environment, 2022, Vol. 3, No. 1, pp. 1–10, DOI: 10.1038/s43247-022-00498-3.
  41. Roessler S., Dietz A. J., Development of global snow cover—trends from 23 years of global SnowPack, Earth, 2023, Vol. 4, No 1, P. 1–22, DOI: 10.3390/earth4010001.
  42. Screen J. A., Simmonds I., The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 2010, Vol. 464, No. 7293, pp. 1334–1337, DOI: 10.1038/nature09051.
  43. Sen P. K., Estimates of the regression coefficient based on Kendall’s Tau, J. American Statistical Association, 1968, Vol. 63, pp. 1379–1389, DOI: 10.1080/01621459.1968.10480934.
  44. Serreze M., Francis J., The Arctic amplification debate, Climatic Change, 2006, Vol. 76, pp. 241–264, DOI: 10.1007/s10584-005-9017-y.
  45. Serreze M. C., Holland M. M., Stroeve J., Perspectives on the Arctic’s shrinking sea-ice cover, Science, 2007, Vol. 315, No. 5818, pp. 1533–1536, DOI: 10.1126/science.1139426.
  46. Smith D. M., Screen J. A., Deser C. et al., The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geoscientific Model Development, 2019, Vol. 12, No. 3, pp. 1139–1164, DOI: 10.5194/gmd-12-1139-2019.
  47. Stroeve J., Holland M. M., Meier W. et al., Arctic sea ice decline: Faster than forecast, Geophysical Research Letters, 2007, Vol. 34, Issue 9, Article L09501, DOI: 10.1029/2007GL029703.
  48. Stroeve J. C., Serreze M. C., Holland M. M. et al., The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Climatic Change, 2012, Vol. 110, No. 3–4, pp. 1005–1027, DOI: 10.1007/s10584-011-0101-1.
  49. Theil H., A rank-invariant method of linear and polynomial regression analysis, I, II, and III Proc. Royal Netherlands Academy of Sciences, 1950, Vol. 53, pp. 386–392, 521–525 and 1397–1412.
  50. Vihma T., Effects of Arctic Sea Ice Decline on Weather and Climate: A Review, Surveys in Geophysics, 2014, Vol. 35, No. 5, pp. 1175–1214, DOI: 10.1007/s10712-014-9284-0.
  51. Walsh J. E., Intensified warming of the Arctic: Causes and impacts on middle latitudes, Global and Planetary Change, 2014, Vol. 117, pp. 52–63, DOI: 10.1016/j.gloplacha.2014.03.003.
  52. Wassmann P., Duarte C. M., Agustí S., Sejr M. K., Footprints of climate change in the Arctic marine ecosystem, Global Change Biology, 2011, Vol. 17, Issue 2, pp. 1235–1249, DOI: 10.1111/j.1365-2486.2010.02311.x.
  53. Wu Y., Smith K. L., Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model, J. Climate, 2016, Vol. 29, No. 6, pp. 2041–2058, DOI: 10.1175/JCLI-D-15-0602.1.
  54. Yang Q., Kang S., Yu H., Yang Y. (2023a), Impact of the shrinkage of Arctic sea ice on eurasian snow cover changes in 1979–2021, Advances in Atmospheric Sciences, 2023, Vol. 40, No. 12, pp. 2183–2194, DOI: 10.1007/s00376-023-2272-x.
  55. Yang Y., You Q., Smith T. et al. (2023b), Spatiotemporal dipole variations of spring snowmelt over Eurasia, Atmospheric Research, 2023, Vol. 295, Article 107042, DOI: 10.1016/j.atmosres.2023.107042.
  56. Yue S., Che T., Dai L. et al., Characteristics of snow depth and snow phenology in the high latitudes and high altitudes of the Northern Hemisphere from 1988 to 2018, Remote Sensing, 2022, Vol. 14, No 19, Article 5057, DOI: 10.3390/rs14195057.