ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 141-161

A comparative analysis of wildfire carbon emissions estimates in Russia according to global inventories

A.M. Matveev 1 , S.A. Bartalev 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 01.07.2024
DOI: 10.21046/2070-7401-2024-21-4-141-161
The paper focuses on a comparative analysis of global fire emissions inventories in application to estimate wildfire carbon emissions in Russia for the period of years 1997–2023. The following inventories developed using remote sensing data have been considered: GFAS v1.2, GFED v4.1s, FEER v1.0-GFAS v1.2, FINN v2.5, QFED v2.5-r1. Depending on the inventory, Russia’s average annual contribution to global wildfire carbon emissions is estimated at 6–11 %, or 130–275 Tg C (3.5–7.5 % considering forest fires emissions only). Annual wildfire carbon emissions vary from 54 to 490 Tg C depending on the inventory and annual fire activity, with peak values observed in years of extremely large and intense forest fires (2003, 2008, 2012, and 2021). Forest fires account for 53–72 % of total wildfire carbon emissions. Global inventories’ estimates exceed the officially reported data for forest fires, which only considers fires in the managed forest areas (80 Tg C emissions annually). Over the observation period of 2002–2023, according to the inventories considered, there has been an upward trend in forest fires carbon emissions (+0.5 Tg C per year) and a decrease in emissions from non-forest fires (–1.25 Tg C per year). The reviewed inventories show a high correlation value (R2 > 0.8) of time-series of total annual carbon emissions estimates. However, on a per pixel basis, the correlation of carbon emission estimates between inventories is significantly lower (R2 = 0.22…0.44, p < 0.001; spatial resolution 0.1°). The contribution of emission sources other than wildfires (e.g., gas flares) to wildfire carbon emissions is estimated to be 0.5–6.6 %, depending on the inventory considered.
Keywords: remote sensing, wildfires, fire emissions, carbon emissions
Full text

References:

  1. Bartalev S. A., Egorov V. A., Efremov V. Yu., Loupian E. A., Stytsenko F. V., Flitman E. V., Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 9–26 (in Russian).
  2. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E.A, Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, Vol. 2. pp. 83–94 (in Russian).
  3. Bartalev S., Egorov V., Zharko V., Loupian E., Plotnikov D., Khvostikov S., Shabanov N., Land cover mapping over Russia using Earth observation data, Moscow: IKI RAN, 2016, 208 p. (in Russian).
  4. Bartalev S. A., Stytsenko F. V., Khvostikov S. A., Loupian E. A., Methodology of post-fire tree mortality monitoring and prediction using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 176–193 (in Russian), DOI:10.21046/2070-7401-2017-14-6-176-193.
  5. Bondur V. G., Gordo K. A., Zima A. L., Satellite research of the effects of wildfires on the territory of Russia for various types of vegetation cover, Issledovanie Zemli iz kosmosa, 2022, No 6, pp. 74–86 (in Russian), DOI: 10.31857/S0205961422060033.
  6. Ershov D. V., Sochilova E. N., Quantitative estimates of direct pyrogenic carbon emissions in forests of Russia according to remote monitoring data 2021, Voprosy lesnoi nauki, 2022, Vol. 5, No. 4, Article 117, 17 p. (in Russian), DOI: 10.31509/2658-607x-202254-117.
  7. Loupian E. A., Bartalev S. A., Balashov I. V. et al., Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175, DOI: 10.21046/2070-7401-2017-14-6-158-175.
  8. Loupian E. A., Proshin A. A., Burtsev M. A. et al., Experience of development and operation of the “IKI-Monitoring” center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  9. Loupian E. A., Lozin D. V., Balashov I. V. et al., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No 3, pp. 217–232 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-217-232.
  10. Natsional’nyi doklad o kadastre antropogennykh vybrosov i absorbtsii poglotitelyami parnikovykh gazov ne reguliruemykh Monreal’skim protokolom za 1990–2021 gg. Chast’ 1 (National report on anthropogenic sources of emissions and greenhouse absorbers not regulated by the Montreal Protocol in 1990–2021. Part 1), Moscow, 2023, 479 p. (in Russian), https://unfccc.int/documents/631719.
  11. Stytsenko F. V., Bartalev S. A., Mapping the effect of the wildfires on the forest ecosystems of Russia, 15-eSibirskoe soveschanie i shkola molodikh uchenikh po klimato-ecologicheskomy monitorinu (Proc. Siberian conf. and school of the young scientist on the ecological and climatological monitoring). Tomsk: IMCES SD RAS, 2023, pp. 338–341 (in Russian).
  12. Shinkarenko S. S., Bartalev S. A., Prospects of phytomass mapping of the read communities in the delta landscapes of Lower Volga, Materialy 21-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 21th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), 2023, p. 418 (in Russian), DOI: 10.21046/21DZZconf-2023a.
  13. Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N., Satellite observations of reed fire smoke on the Lower Volga, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 93–105 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-93-105.
  14. Akagi S. K., Yokelson R. J., Wiedinmyer C. et al., Emission factors for open and domestic biomass burning for use in atmospheric models, Atmospheric Chemistry Physics, 2011, Vol. 11(9), pp. 4039–4072, DOI: 10.5194/acp-11-4039-2011.
  15. Anderson K., Chen J., Englefield P. et al., The global forest fire emissions prediction system version 1.0, Geoscientific Model Development preprint, 2024, 57 p., DOI: 10.5194/gmd-2024-31.
  16. Andreae M. O., Merlet P., Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 2001, Vol. 15(4), pp. 955–966, DOI: 10.1029/2000GB001382.
  17. Avitabile V., Herold M., Heuvelink G. B. M. et al., An integrated pan-tropical biomass map using multiple reference datasets, Global Change Biology, 2016, Vol. 22(4), pp. 1406–1420, DOI: 10.1111/gcb.13139.
  18. Boschetti L., Roy D. P., Giglio L. et al., Global validation of the collection 6 MODIS burned area product, Remote Sensing Environment, 2019, Vol. 235, Article 111490, DOI: 10.1016/j.rse.2019.111490.
  19. Byrne B., Liu J., Bowman K., Pascolini-Campbell M., Chatterjee A., Pandey S., Miyazaki K., van der Werf G., Wunch D., Wennberg P., Roehl C., Sinha S., Unprecedented Canadian forest fire carbon emissions during 2023, Research Square preprint, 2023, 29 p., https://assets-eu.researchsquare.com/files/rs-3684305/v1_covered_13190486-f8e5-4695-841d-fbfc7aa6cc8e.pdf?c=1701398741.
  20. Chen Y., Hall J., van Wees D. et al., Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5), Earth System Science Data, 2023, Vol.  15(11), pp. 5227–5259, DOI: 10.5194/essd-15-5227-2023.
  21. Christian T. J., Kleiss B., Yokelson R. J. et al., Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels, J. Geophysical Research, 2003, Vol. 108, Issue D28, Article 4719, DOI: 10.1029/2003JD003704.
  22. Darmenov A., da Silva A., The quick fire emissions dataset (QFED), Documentation of versions 2.1, 2.2, and 2.4, Technical Report Series on Global Modeling and Data Assimilation, 2015, Vol. 38, https://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf.
  23. Elvidge C. D., Zhizhin M., Sparks T. et al., Global satellite monitoring of exothermic industrial activity via infrared emissions, Remote Sensing Environment, 2023, Vol. 15, Issue 19, Article 4760, DOI: 10.3390/rs15194760.
  24. Fan L., Wigneron J. P., Ciais P. et al., Siberian carbon sink reduced by forest disturbances. Nature Geoscience, 2023, Vol. 16, pp. 56–62, DOI: 10.1038/s41561-022-01087-x.
  25. Franquesa M., Lizundia-Loiola J., Stehman S. V., Chuvieco E., Using long temporal reference units to assess the spatial accuracy of global satellite-derived burned area products, Remote Sensing of Environment, 2022, Vol. 269, Article 112823. DOI: 10.1016/j.rse.2021.112823.
  26. Ichoku C., Ellison L., Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements, Atmospheric Chemistry Physics, 2014, Vol. 14(1), pp. 6643–6667, DOI: 10.5194/acp-14-6643-2014.
  27. Kaiser J. W., Heil A., Andreae M. O. et al., Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 2012, Vol. 9(1), pp. 527–554, DOI: 10.5194/bg-9-527-2012.
  28. Krylov A., McCarty J. L., Potapov P. et al., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environmental Research Letters, 2014, Vol. 9, Article 105007, DOI: 10.1088/1748-9326/9/10/10500.
  29. Liu T., Mickley L. J., Marlier M. E. et al., Diagnosing spatial biases and uncertainties in global fire emissions inventories: Indonesia as regional case study, Remote Sensing Environment, 2020, Vol. 237, Article 111557, DOI: 10.1016/j.rse.2019.111557.
  30. McCarty J., Krylov A., Prishchepov A. et al., Agricultural fires in European Russia, Belarus, and Lithuania and their impact on air quality, 2002–2012, In: Land-cover and land-use changes in Eastern Europe after the collapse of the Soviet Union in 1991, Gutman G., Radeloff V. (eds.), Cham, Switzerland: Springer Intern. Publ., 2017, pp. 193–221, DOI: 10.1007/978-3-319-42638-9_9.
  31. Mota B., Wooster M. J., A new top-down approach for directly estimating biomass burning emissions and fuel consumption rates and totals from geostationary satellite fire radiative power (FRP), Remote Sensing Environment, 2018, Vol. 206, pp. 45–62, DOI: 10.1016/j.rse.2017.12.016.
  32. Ostroukhov A., Klimina E., Kuptsova V., Naito D., Estimating long-Term average carbon emissions from fires in non-forest ecosystems in the temperate belt, Remote Sensing Environment, 2022, Vol. 14(5), Article 1197, DOI: 10.3390/rs14051197.
  33. Ponomarev E., Yakimov N., Ponomareva T. et al., Current trend of carbon emissions from wildfires in Siberia, Atmosphere, 2021, Vol. 12(5), Article 559, DOI: 10.3390/atmos12050559.
  34. Ponomarev E. I., Zabrodin A. N., Shvetsov E. G., Ponomareva T. V., Wildfire intensity and fire emissions in Siberia, Fire, 2023, Vol. 6, Issue 7, Article 246, DOI: 10.3390/fire6070246.
  35. Romanov A. A., Tamarovskaya A. N., Gloor E. et al., Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001–2021, Science Total Environment, 2022, Vol. 846, Article 157322, DOI: 10.1016/j.scitotenv.2022.157322.
  36. Seiler W., Crutzen P. J., Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning, Climatic Change, 1980, Vol. 2(3), pp. 207–247, DOI: 10.1007/BF00137988.
  37. Shiraishi T., Hirata R., Hirano T., New inventories of global carbon dioxide emissions through biomass burning in 2001–2020, Remote Sensing Environment, 2021, Vol. 13(10), Article 1914, DOI: 10.3390/rs13101914.
  38. Shvidenko A., Schepaschenko D., Sukhinin A., McCallum I., Masyutov S., Carbon emissions from forest fires in boreal Eurasia between 1998–2010, 5 th Intern. Wildland Fire Conf., 2011, https://pure.iiasa.ac.at/9789.
  39. Urbanski S., Wildland fire emissions, carbon, and climate, Forest Ecology Management, 2014, Vol. 317, pp. 51–60, DOI: 10.1016/j.foreco.2013.05.045.
  40. van der Werf G. R., Randerson J. T., Giglio L. et al., Global fire emissions estimates during 1997–2016, Earth System Science Data, 2017, Vol. 9(2), pp. 697–720, DOI: 10.5194/essd-9-697-2017.
  41. van Leeuwen T. T., van der Werf G. R., Hoffmann A. A. et al., Biomass burning fuel consumption rates: a field measurement database, Biogeosciences, 2014, Vol. 11(24), pp. 7305–7329, DOI: 10.5194/bg-11-7305-2014.
  42. van Wees D., van der Werf G. R., Randerson J. T. et al., Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED), Geoscientific Model Development, 2022, Vol. 15(22), pp. 8411–8437, DOI: 10.5194/gmd-15-8411-2022.
  43. Vivchar A. V., Moiseenko K. B., Pankratova N. V., Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling, Izvestiya, Atmospheric Oceanic Physics, 2010, Vol 46(3), pp. 281–293, DOI: 10.1134/S0001433810030023.
  44. Wiedinmyer C., Kimura Y., McDonald-Buller E. C. et al., The fire inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications, Geoscientific Model Development, 2023, Vol. 16(13), pp. 3873–3891, DOI: 10.5194/gmd-16-3873-2023.
  45. Wooster M. J., Roberts G., Perry G. L.W., Kaufman Y. J., Retrieval of biomass combustion rates and totals from fire radiative power observations, FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophysicla Research, 2005, Vol. 110, Issue D24, Article D24311, DOI: 10.1029/2005JD006318.
  46. Xu L., Saatchi S. S., Yang Y. et al., Changes in global terrestrial live biomass over the 21st century, Sciences Advances, 2021, Vol. 7(27), Article eabe9829, DOI: 10.1126/sciadv.abe9829.
  47. Zhizhin M., Matveev A., Ghosh T. et al., Measuring gas flaring in Russia with multispectral VIIRS nightfire, Remote Sensing Environment, 2021, Vol. 13(16), Article 3078, DOI: 10.3390/rs13163078.