ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 209-222

Remote assessment of soil moisture content in one-meter layer using SMOS satellite data

A.N. Romanov 1 , I.V. Khvostov 1 , I.V. Ryabinin 1 , D.A. Romanov 1 
1 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
Accepted: 12.08.2024
DOI: 10.21046/2070-7401-2024-21-4-209-222
In this paper, we investigate the possibility of remote determination of soil moisture content in one-meter-thick layer based on brightness temperatures of the underlying surface measured by the SMOS (Soil Moisture Ocean Salinity) satellite at a wavelength of 21 cm. For this purpose, we propose a new approach based on the use of experimentally established dependencies between the moisture content in adjacent soil layers, starting from the surface and down to a depth of 1 m. The studies were conducted in the Kulunda steppe (Altai Krai). In the field experiment, volumetric moisture (W) and soil moisture content (h) were determined at test sites at different depths from the surface to a depth of 1 m. Based on the SMOS satellite data (L1c product) and field measurements of W and h, the dependence of brightness temperature at horizontal polarization on soil moisture content in the surface layer of 0–5 cm was established. The obtained dependencies were used to calculate the total moisture content in one-meter soil layer H0–100. From a comprehensive analysis of satellite data, field and laboratory measurements, a satisfactory agreement was obtained between the values of H0–100 determined by contact (thermostat-weight) and remote (radiophysical) methods.
Keywords: soil moisture, brightness temperature, emissivity, refractive and absorption indices, microwave range, SMOS satellite
Full text

References:

  1. Basharinov A. E., Tuchkov L. T., Polyakov V. S., Ananov N. I., Izmerenie radioteplovykh i plazmennykh izluchenii v SVCH-diapazone (Measurement of radiothermal and plasma radiation in the microwave range), Moscow: Sovetskaya redaktsiya, 1968, 390 p. (in Russian).
  2. Basharinov A. E., Gurvich A. S., Egorov S. T., Radioteplovoe izluchenie Zemli kak planety (Radiothermal radiation of the Earth as a planet), Moscow: Nauka, 1974, 188 p. (in Russian).
  3. Beljaeva T. A., Bobrov A. P., Bobrov P. P., Galjeev O. V., Mandrygina V. N., Determination of soil dielectric models parameters at various density and humus content using experimental measurement data at frequency band 0,1–20 GHz, Issledovanie Zemli iz kosmosa, 2003, Vol. 18, No. 5, pp. 28–35 (in Russian).
  4. Golovanov A. I., Palasios O., On determining the dependence of soil moisture reserves on the depth of groundwater freezing, Pochvovedenie, 1968, No. 1, pp. 101–105 (in Russian).
  5. Zotova E. N., Geller A. G., Sposob opredeleniya vlazhnosti pochv (Method for determining soil moisture), Certificate of authorship SU 985741, Publ. 30.12.1982 (in Russian).
  6. Komarov S. A., Mironov V. L., Romanov A. N., Remote determination of groundwater levels using regional databases, Issledovanie Zemli iz kosmosa, 1993, No. 4, pp. 79–82 (in Russian).
  7. Komarov S. A., Mironov V. L., Romanov A. N., Evtyushkin A. V. (1994a), Determination of areas of flooded lands using remote methods, Meteorologiya i gidrologiya, 1994, No. 1, pp. 87–91 (in Russian).
  8. Komarov S. A., Mironov V. L., Romanov A. N., Rychkova N. V. (1994b), Distantsionnyi radiofizicheskii sposob opredeleniya vlazhnosti pochvy (Remote radiophysical method for determining soil moisture), Patent RU 2010219, Publ. 30.03.1994 (in Russian).
  9. Komarov S. A., Mironov V. L., Rychkova N. V., Sposob opredeleniya vlazhnosti ustoichivogo zavyadaniya (Method for determining moisture content of stable wilting), Patent RU 2092819, Publ. 10.10.1997 (in Russian).
  10. Nikiforov M. V., Pegoev N. N., Shkuratov I. I., Sposob opredeleniya vlazhnosti pochv v ikh estestvennom zaleganii (Method for determining soil moisture in their natural occurrence), Certificate of authorship SU 1061096, Publ. 15.12.1983 (in Russian).
  11. Reutov E. A., Shutko A. M., Sposob distantsionnogo opredeleniya profilya vlazhnosti i integral’nogo vlagosoderzhaniya pochvy (Method for remote determination of soil moisture profile and integral moisture content), Certificate of authorship SU 1326968, Publ. 30.07.1987 (in Russian).
  12. Reutov E. A., Shutko A. M., Estimation of groundwater levels based on remote microwave radiometric measurements, Issledovaniye Zemli iz kosmosa, 1991, No. 2, pp. 99–106 (in Russian).
  13. Romanov A. N., Effect of the volume wetness on the dielectric properties of humus in the microwave band, Radiotekhnika i elektronika, 2006, Vol. 51, No. 6, pp. 734–735 (in Russian).
  14. Tikhonov V. V., Khvostov I. V., Alekseeva T. A. et al., Analysis of the winter hydrological regime of the Yenisei, Pechora and Khatanga estuaries using SMOS data, Issledovanie Zemli iz kosmosa, 2022, Vol. 202, No. 6, pp. 47–62 (in Russian), DOI: 10.31857/S0205961422060124.
  15. Tikhonov V. V., Alekseeva T. A., Afanasyeva E. V. et al., On the possibility to determine the concentration of Arctic sea ice using SMOS satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 329–335 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-329-335.
  16. Sharkov E. A., Radioteplovoe distantsionnoe zondirovanie Zemli: fizicheskie osnovy, V 2-kh t., T. 1 (Radiothermal remote sensing of the Earth: Physical foundations, V 2 t., Vol. 1), Moscow: IKI RAN, 2014, 548 p. (in Russian).
  17. Shutko A. M. SVCh-radiometriya vodnoi poverkhnosti i pochvogruntov (Microwave radiometry of water surface and soil), Moscow: Nauka, 1986, 190 p. (in Russian).
  18. Bitar A. A., Mahmoodi A., Kerr Y. et al., Global assessment of droughts in the last decade from SMOS root zone soil moisture, 2021 IEEE Intern. Geoscience and Remote Sensing Symp. IGARSS, 2021, pp. 8628–8631, DOI: 10.1109/IGARSS47720.2021.9554773.
  19. Boyarskii D. A., Tikhonov V. V., Komarova N. Y., Model of dielectric constant of bound water in soil for applications of microwave remote sensing, Progress in Electromagnetics Research, 2002, Vol. 35, pp. 251–269. DOI: 10.1163/156939302X01227.
  20. Gutierrez A., Castro R., Vieira P., Lopes G., Barbosa J., SMOS L1 Processor L1c data processing model: Technical rep., SO-DS-DME-L1OP-0009, 2017.
  21. John J., Sushama L., Roose S., A machine learning framework for extending SMOS surface soil moisture observations over Canada, EGU General Assembly, 2024, Article EGU24-12005, DOI: 10.5194/egusphere-egu24-12005.
  22. Kerr Y. H., Waldteufel P., Richaume P. et al., The SMOS soil moisture retrieval algorithm, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 5, pp. 1384–1403, DOI: 10.1109/TGRS.2012.2184548.
  23. Kirdiashev K. P., Chukhlantsev A. A., Shutko A. M., Microwave radiation of the Earth’s surface in the presence of vegetation cover, Radio Engineering and Electronics, 1979, Vol. 24, pp. 256–264.
  24. Komarov S. A., Mironov V. L., Romanov A. N., The effect of salinity on the permittivity of moist soils in the microwave band, J. Communications Technology and Electronics, 2002, Vol. 47, No. 6, pp. 626–631.
  25. Li L., Dai Y., Wei Z. et al., Enhancing Deep learning soil moisture forecasting models by integrating physics-based models, Advances in Atmospheric Sciences, 2024, Vol. 41, No. 7, pp. 1326–1341, DOI: 10.1007/s00376-023-3181-8.
  26. Luo X., Yin C., Sun Y. et al., A real-time prediction approach to deep soil moisture combining GNSS-R data and a water movement model in unsaturated soil, Water, 2024, Vol. 16, No. 7, Article 979, DOI: 10.3390/w16070979.
  27. Mladenova I. E., Bolten J. D., Crow W. T. et al., Evaluating the operational application of SMAP for global agricultural drought monitoring, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2019, Vol. 12, No. 9, pp. 3387–3397, DOI: 10.1109/JSTARS.2019.2923555.
  28. Njoku E. G., Kong J. A., Theory for passive microwave remote sensing of near-surface soil moisture, J. Geophysical Research, 1977, Vol. 82, pp. 3108–3118. DOI: 10.1029/JB082i020p03108.
  29. Pal M., Maity R., Assimilation of remote sensing based surface soil moisture to develop a spatially varying vertical soil moisture profile database for entire Indian mainland, J. Hydrology, 2021, Vol. 601, Article 126807, DOI: 10.1016/j.jhydrol.2021.126807.
  30. Romanov A. N., On the influence of the macroaggregate composition of soils on their dielectric and radiative properties in the microwave band, J. Communications Technology and Electronics, 2004, Vol. 49, No. 9, pp. 1048–1050.
  31. Sahr K., White D., Kimerling A. J., Geodesic discrete global grid systems, Cartography Geographic Information Science, 2023, Vol. 30, No. 2, pp. 121–134, DOI: 10.1559/152304003100011090.
  32. Schmugge T. J., Effect of Texture on microwave emission from soils, IEEE Transactions on Geoscience and Remote Sensing, 1980, Vol. GE-18, No. 4, pp. 353–361, DOI: 10.1109/TGRS.1980.350313.
  33. Schmugge T. J., Gloersen P. W., Wilheit T., Geiger F., Remote sensing of soil moisture with microwave radiometry, J. Geophysical Research, 1974, Vol. 79, No. 2, pp. 317–323. DOI: 10.1029/JB079i002p00317.
  34. Wang C., Yu T., Gu X. et al., The verification and fusion analysis of passive microwave soil moisture products in the three northeastern provinces of China, Atmosphere, 2024, Vol. 15, No. 4, Article 441, DOI: 10.3390/atmos15040441.
  35. Wang P., Zeng J., Chen K.-S. et al., Global-scale assessment of multiple recently developed/reprocessed remotely sensed soil moisture datasets, IEEE Trans. Geoscience and Remote Sensing, 2024, Vol. 62, Article 4403518, DOI: 10.1109/TGRS.2024.3361890.
  36. Ye N., Walker J. P., Yeo I.-Y. et al., Toward P-band passive microwave sensing of soil moisture, IEEE Geoscience and Remote Sensing Letters, 2021, Vol. 18, No. 3, pp. 504–508, DOI: 10.1109/LGRS.2020.2976204.