ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 72-84

ODS instrument of ExoMars-2022 project: Structure, main characteristics and results of laboratory calibrations

V.S. Khorkin 1, 2 , Yu.S. Dobrolenskiy 1 , O.I. Korablev 1 , N.A. Vyazovetskiy 1 , I.A. Dzyuban 1 , A.Yu Titov 1 , A.A. Fedorova 1 , A.G. Sapgir 1 , D. Toledo 3 , J.-P. Pommereau 4 , P. Rannou 3 
1 Space Research Institute RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 Instituto Nacional de Técnica Aerospacial, Madrid, Spain
4 LATMOS, l’Université de Versailles Saint-Quentin-en-Yvelines, Guyancourt, France
Accepted: 08.07.2024
DOI: 10.21046/2070-7401-2024-21-4-72-84
The paper presents the ODS (Optical Depth Sensor) instrument developed at the Institute of Space Research of the Russian Academy of Sciences for the ExoMars-2022 project. Designed for long-term operation on the surface of Mars, ODS shall provide daily measurements of optical thickness of dust and condensation aerosol in the planet’s atmosphere from the illumination of its surface. To participate in the ExoMars-2022 project, the ODS instrument was upgraded and underwent a full cycle of ground testing. The paper describes the instrument design, its optical scheme and the spectral characteristics of two optical channels. The paper also considers the parameters of the temperature sensor incorporated in the instrument. The results of laboratory calibrations of the device parameters such as field of view, spectral characteristics and calibration of the ODS temperature sensor are given. In the experiment it is found that the instrument has spectral transmittance in the range of 350–450 and 740–1030 nm, the field of view of the instrument is from 18 to 33° and from 35 to 45° in zenith angle. The instrument has been tested in the temperature range –40 to +40 °C.
Keywords: ExoMars-2022, atmosphere optical depth, field of view, calibrations
Full text

References:

  1. Khorkin V. S., Fedorova A. A., Dobrolenskiy Yu. S. et al., ExoMars-2022 mission ODS instrument: Modeling and ground field measurements, Solar System Research, Vol. 57, pp. 324–335, DOI: 10.1134/S0038094623040056.
  2. Horowitz P., Hill W., The art of electronics, 2nd ed., Cambridge: Cambridge Univ. Press. 1192 p.
  3. Cantor B. A., MOC observations of the 2001 Mars planet-encircling dust storm, Icarus, 2007, Vol. 186, pp. 60–96, DOI: 10.1016/j.icarus.2006.08.019.
  4. Fedorova A. A., Rodin A. V., Baklanova I. V., Seasonal cycle of water vapor in the atmosphere of Mars as revealed from the MAWD/Viking 1 and 2 experiment, Solar System Research, 2004, Vol. 38, Issue 6, pp. 421–433, DOI: 10.1007/s11208-005-0009-2.
  5. Guzewich S. D., Lemmon M., Smith C. L. et al., Mars Science Laboratory observations of the 2018/Mars year 34 global dust storm, Geophysical Research Letters, 2019, Vol. 46, Issue 1, pp. 71–79, DOI: 10.1029/2018GL080839.
  6. Haberle R., Clancy R., Forget F. et al., The Atmosphere and Climate of Mars, Cambridge: Cambridge University Press, 2017, DOI: 10.1017/9781139060172.
  7. Harri A.-M., Linkin V., Polkko J. et al., Meteorological observations on Martian surface: met-packages of Mars-96 small stations and penetrators, Planetary and Space Science, 1998, Vol. 46, Issues 6–7, pp. 779–793, DOI: 10.1016/S0032-0633(98)00012-9.
  8. Holben B. N., Eck T. F., Slutsker I. et al., AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 1998, Vol. 66, Issue 1, pp. 1–16, DOI: 10.1016/S0034-4257(98)00031-5.
  9. Linkin V., Harri A.-M., Lipatov A. et al., A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 small station, Planetary and Space Science, 1998, Vol. 46, pp. 717–737, DOI: 10.1016/S0032-0633(98)00008-7.
  10. Lorenz R. D., Martínez G. M., Spiga A. et al., Lander and rover histories of dust accumulation on and removal from solar arrays on Mars, Planetary and Space Science, 2021, Vol. 207, Article 105337, 12 p., https://doi:10.1016/j.pss.2021.105337.
  11. Montmessin F., Rannou P., Cabane M., New insights into Martian dust distribution and water-ice cloud microphysics, J. Geophysical Research: Planets, 2002, Vol. 107, Issue E6, pp. 4.1–4.14, DOI: 10.1029/ 2001JE001520.
  12. Toledo D., Preparation and validation of the cloud and dust opacity sensor ODS for ExoMars 2018 mission, PhD thesis in Astrophysics, Univ. Reims Champagne, 2015, 182 p.
  13. Toledo D., Rannou P., Pommereau J.-P., Foujols T. (2016a), The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on Martian atmosphere, Experimental Astronomy, 2016, Vol. 42, pp. 61–83, DOI: 10.1007/s10686-016-9500-7.
  14. Toledo D., Rannou P., Pommereau J.-P. et al. (2016b), Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS), Atmospheric Measurement Techniques, 2016, Vol. 9, pp. 455–467, DOI: 10.5194/amt-9-455-2016.
  15. Tran T. T., Pommereau J.-P., Rannou P., Maria J.-L., Technical aspect of the optical depth sensor, Advances in Space Research, 2005, Vol. 36, pp. 2182–2186, DOI: 10.1016/j.asr.2005.07.079.
  16. Vincendon M., Audouard J., Altieri F., Ody A., Mars Express measurements of surface albedo changes over 2004–2010, Icarus, 2015, Vol. 251, pp. 145–163, DOI: 10.1016/j.icarus.2014.10.029.
  17. Wolff M. J., Clancy R. T., Kahre M. A. et al., Mapping water ice clouds on Mars with MRO/MARCI, Icarus, 2019, Vol. 332, pp. 24–49, DOI: 10.1016/j.icarus.2019.05.041.
  18. Wolff M. J., Fernando A., Smith M. D. et al., Diurnal variations in the aphelion cloud belt as observed by the Emirates Exploration Imager (EXI), Geophysical Research Letters, 2022, Vol. 49, Issue 18, Article e2022GL100477, DOI:10.1029/2022GL100477.
  19. Zelenyi L. M., Korablev O. I., Rodionov D. S. et al., Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission, Solar System Research, 2015, Vol. 49, Issue 7, pp. 509–517, DOI: 10.1134/S0038094615070229.