ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 131-140

Variation in spectral indices in the context of natural and technogenic transformations of landscapes

N.D. Yakimov 1, 2 , E.I. Ponomarev 2, 3 , T.V. Ponomareva 2, 3 
1 Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russia
2 Siberian Federal University, Krasnoyarsk, Russia
3 Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
Accepted: 26.06.2024
DOI: 10.21046/2070-7401-2024-21-4-131-140
We investigated the variability of spectral indices calculated from Landsat data for areas with signs of natural and technogenic transformations of vegetation and ground cover. An analysis of relative deviation of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) indicators from the background values due to changes in the condition of the underlying surface covers was carried out. A classification of significant type-factors of transformation was produced for the territory of the Olimpiadinsky mining and processing plant (North Yenisei Region, Krasnoyarsk Krai), which is characterized by the signs of natural (wildfires) and man-made (mining) impacts for the period of 2000–2023. The degree of transformation of vegetation and ground cover under the influence of both natural and technogenic factors was described in terms of relative anomalies of the spectral indices ΔLST and ΔNDVI, calculated as the average for each cell of a regular network in the study area. A linear relationship was recorded between the anomalies of the ΔLST and ΔNDVI and the degree of natural/technogenic transformation of the vegetation and ground cover with a reliability of 0.31–0.81 for the thermal anomalies ΔLST and at the level of 0.28–0.85 for the vegetation anomalies ΔNDVI. It has been established that the degree of generalization of the initial data, depending on the size of the regular network cells used, does not affect critically the result of analyzing the state of the territory using the proposed method.
Keywords: forest ecosystems, predictive analyses, IPCC, RCP, MODIS, NDVI, LST, Pr
Full text

References:

  1. Bartalev S. A., Stytsenko F. V., Assessment of forest-stand destruction by fires based on remote-sensing data on the seasonal distribution of burned areas, Contemporary Problems of Ecology, 2021, Vol. 14, pp. 711–716, DOI: 10.1134/S1995425521070027.
  2. Gornyy V. I., Kiselev A. V., Kritsuk S. G. et al., Satellite mapping of the thermal response of ecosystems of Northern Eurasia to climate change, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 155–164 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-155-164.
  3. Zhirin V. M., Knyazeva S. V., Edlina S. P., Long-term dynamics of vegetation indices in dark coniferous forest after Siberian moth injury, Lesovedenie, 2016, No. 1, pp. 3–14 (in Russian).
  4. Zabrodin A. N., Ponomarev E. I., Dependence assessment between the degree of fire impact on vegetation and the fire radiative power, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 166–175 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-166-175.
  5. Kalabin G. V., Moiseenko T. I., Gorny V. I. et al., Satellite monitoring of natural environment at Olimpiada gold open-cut mine, J. Mining Science, 2013, Vol. 49, No. 1, pp. 160–166, DOI: 10.1134/S106273914901019X.
  6. Loupian E. A., Lozin D. V., Balashov I. V. et al., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 217–232 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-217-232.
  7. Ponomarev E. I., Yakimov N. D., Tretyakov P. D., Sultson S. M., Estimation of defoliation features in dark coniferous tree stands after the impact of Siberian silk moth according to remote data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 175–186 (in Russian), DOI: 10.21046/2070-7401-2023-20-4-175-186.
  8. Ponomareva T. V., Kovaleva N. M., Ponomarev E. I., Malkevich V. V., Biodiversity assessment in the area of Olimpiada mining and processing plant, Polyus Krasnoyarsk, Gornyi zhurn., 2020, No. 10, pp. 18–53 (in Russian), DOI: 10.17580/gzh.2020.10.02.
  9. Soromotin A. V., Brodt L. V., Monitoring of vegetation cover during the development of oil and gas fields according to the Landsat multispectral survey data, Tyumen State University Herald, Natural Resource Use and Ecology, 2018, Vol. 4, No. 1, pp. 37–49 (in Russian), DOI: 10.21684/2411-7927-2018-4-1-37-49.
  10. Carlson T. N., Ripley D. A., On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote sensing of Environment, 1997, No. 62(3), pp. 241–252, DOI: 10.1016/S0034-4257(97)00104-1.
  11. Hagner O., Reese H., A method for calibrated maximum likelihood classification of forest types, Remote Sensing of Environment, 2007, Vol. 110, No. 4, pp. 438–444, DOI: 10.1016/j.rse.2006.08.017.
  12. Loupian E. A., Bourtsev M. A., Proshin A. A. et al., Usage Experience and Capabilities of the VEGA-Science System, Remote Sensing, 2022, Vol. 14(1), Article 77, DOI: 10.3390/rs14010077.
  13. Meng X., Cheng J., Zhao S. et al., Estimating land surface temperature from Landsat-8 data using the NOAA JPSS enterprise algorithm, Remote Sensing, 2019, Vol. 11, No. 2, Article 155, DOI: 10.3390/rs11020155.
  14. Ponomareva T. V., Litvintsev K. Y., Finnikov K. A. et al., Soil temperature in disturbed ecosystems of Central Siberia: Remote sensing data and numerical simulation, Forests, 2021, Vol. 12, No. 8, Article 994, DOI: 10.3390/f12080994.
  15. Potapov P., Hansen M. C., Pickens A. et al., The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: First results, Frontiers in Remote Sensing, 2022, Vol. 3, No. 8, Article 56903, DOI: 10.3389/frsen.2022.856903.
  16. Warrens J., Cohen’s kappa is a weighted average, Statistical Methodology, 2011, Vol. 6, No. 1, pp. 67–79, DOI: 10.1016/j.stamet.2011.06.002.
  17. Yakimov N. D., Ponomarev E. I., Ponomareva T. V., Satellite data in thermal range for natural and technogenic ecosystems monitoring, E3S Web of Conferences: Regional Problems of Earth Remote Sensing (RPERS 2021), 2021, Vol. 333, Article 02017, DOI: 10.1051/e3sconf/202133302017.