ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 176-187

Satellite monitoring of post-fire Normalized Burn Ratio dynamics in forests in the south of Central Siberia

E.G. Shvetsov 1, 2 
1 Khakassian State University, Abakan, Russia
2 Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russia
Accepted: 05.08.2024
DOI: 10.21046/2070-7401-2024-21-4-176-187
Using MODIS data burned areas and post-fire dynamics of the Normalized Burn Ratio (NBR) were assessed for the southern regions of Central Siberia. The average burned area in the region was 230.1±152.4 thousand hectares. Between 2000 and 2023, a decreasing trend in the burned areas in the region was observed. The proportion of stand-replacement fires in the region was about 9% of the total burned area. To characterize post-fire NBR dynamics, linear regression was used, on the basis of MODIS data averaged over the growing season. Increasing trends in the NBR post-fire dynamics were observed for 76% of the burned area, while the absence of post-fire recovery was observed for 24 % of the burned area. Recovery of the normalized burn ratio to pre-fire values for mixed and light-coniferous forests in the region took 12–13 years, while for dark-coniferous forests this period was 14–15 years.
Keywords: wildfires, remote sensing, MODIS, vegetation indices, Siberia
Full text

References:

  1. Bartalev S. A., Stytsenko F. V., An assessment of the forest stands destruction by fires based on the remote sensing data on a seasonal distribution of burnt areas, Lesovedenie, 2021, Vol. 2, pp. 115–122 (in Russian), https://doi.org/10.31857/S0024114821020029.
  2. Bartalev S. A., Egorov V. A., Krylov A. M., Stytsenko F. V., Khovratovich T. S., The evaluation of possibilities to assess forest burnt severity using multi-spectral satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 215–225 (in Russian).
  3. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, Vol. 2, pp. 83–94 (in Russian).
  4. Bartalev S., Egorov V., Zharko V., Loupian E., Plotnikov D., Khvostikov S., Shabanov N., Land cover mapping over Russia using Earth observation data, Moscow: IKI RAN, 2016, 208 p. (in Russian).
  5. Buryak L. V., Sukhinin A. I., Kalenskaya O. P., Ponomarev E. I., Effects of Fires in ribbon-like pine forests of Southern Siberia, Contemporary Problems of Ecology, 2011, Vol. 4(3), pp. 248–253, https://doi.org/10.1134/S1995425511030039.
  6. Drobushevskaya O. V., Farber S. K., Danilina D. M., Nazimova D. I., Fire impact on flora and vegetation in protected areas, In: Strategiya po snizheniyu pozharnoj opasnosti na OOPT Altae-Sayanskogo ekoregiona (Fire danger mitigation: A strategy for protected areas of the Altai-Sayan ecoregion), Onuchin. V. N. (ed.), A. A. Sukachev Inst. of Forest SB RAS, Novosibirsk: Publ. House of SB RAS, 2013, pp. 61–87.
  7. Loupian E. A., Lozin D. V., Balashov I. V. et al., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 217–232 (in Russian), https://doi.org/10.21046/2070-7401-2022-19-3-217-232.
  8. Stytsenko F. V., Bartalev S. A., Egorov V. A., Loupian E. A., Post-fire forest tree mortality assessment method using MODIS satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 254–266 (in Russian).
  9. Shvetsov E. G., Study of the influence of fire radiative power of firest fires on forest disturbance degree in Southern regions of Central Siberia using satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 136–146 (in Russian), https://doi.org/10.21046/2070-7401-2022-19-5-136-146.
  10. Shvetsov E. G., Ponomarev E. I., Post-fire effects in Siberian larch stands on multispectral satellite data, Contemporary Problems of Ecology, 2020, Vol. 13, No. 1, pp. 104–112, https://doi.org/10.1134/S1995425520010096.
  11. Shvidenko A. Z., Shchepashchenko D. G., Vaganov E. A., Sukhinin A. I., Maksyutov S., McCallum I., Lakyda I. P., Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget, Doklady Earth Sciences, 2011, Vol. 441, No. 2, pp. 1678–1682, DOI: 10.1134/S1028334X11120075.
  12. Barrett K., Baxter R., Kukavskaya E. et al., Postfire recruitment failure in Scots pine forests of southern Siberia, Remote Sensing of Environment, 2020, Vol. 237, Article 111539, https://doi.org/10.1016/j.rse.2019.111539.
  13. Chu T., Guo X., Takeda K., Effects of burn severity and environmental conditions on post-fire regeneration in Siberian larch forest, Forests, 2017, Vol. 8, No. 76, https://doi.org/10.3390/f8030076.
  14. Cuevas-Gonzalez M., Gerard F., Balzter H., Rianos D., Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices, Global Change Biology, 2009, Vol. 15, pp. 561–577, https://doi.org/10.1111/j.1365-2486.2008.01784.x.
  15. Delcourt C. J. F., Combee A., Izbicki B. et al., Evaluating the differenced normalized burn ratio for assessing fire severity using Sentinel 2 imagery in Northeast Siberian larch forests, Remote Sensing, 2021, Vol. 13, No. 12, Article 2311, https://doi.org/10.3390/rs13122311.
  16. Dvornikov Y., Novenko E., Korets M., Olchev A., Wildfire dynamics along a north-central Siberian latitudinal transect assessed using Landsat imagery, Remote Sensing, 2022, Vol. 14, Article 790, https://doi.org/10.3390/rs14030790.
  17. Epting J., Verbyla D. L., Landscape level interactions of prefire vegetation, burn severity, and post-fire vegetation over a 16-year period in interior Alaska, Canadian J. Forest Research, 2005, Vol. 35, pp. 1367–1377, https://doi.org/10.1139/x05-060.
  18. French N. H. F., Kasischke E. S., Halle R. J. et al., Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results, Intern. J. Wildland Fire, 2008, Vol. 17, pp. 443–462, https://doi.org/10.1071/WF08007.
  19. Garcia-Lazaro J. R., Moreno-Ruiz J. A., Riano D., Arbelo M., Estimation of burned area in the Northeastern Siberian boreal forest from a Long-Term Data Record (LTDR) 1982–2015 time series, Remote Sensing, 2018, Vol. 10, Article 940, https://doi.org/10.3390/rs10060940.
  20. George C., Rowland C., Gerard F., Balzter H., Retrospective mapping of burnt areas in Central Siberia using a modification of the normalised difference water index, Remote Sensing of Environment, 2006, Vol. 104, pp. 346–359, https://doi.org/10.1016/j.rse.2006.05.015.
  21. Gerard F., Plummer S., Wadsworth R. et al., Forest fire scar detection in the Boreal forest with multitemporal SPOT-Vegetation data, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, pp. 2575–2585, https://doi.org/10.1109/TGRS.2003.819190.
  22. Giglio L., Justice C., Boschetti L., Roy D., Collection 6 MODIS burned area product user’s guide, 2016, https://doi.org/10.5067/MODIS/MCD64A1.006.
  23. Hansen M. C., Potapov P. V., Moore R. et al., High-Resolution global maps of 21st century forest cover change, Science, 2013, Vol. 342, pp. 850–853, https://doi.org/10.1126/science.1244693.
  24. Hanes C. C., Wang X., Jain P. et al., Fire-regime changes in Canada over the last half century, Canadian J. Forest Research, 2019, Vol. 49, pp. 256–269, https://doi.org/10.1139/cjfr-2018-0293.
  25. Hicke J. A., Asner G. P., Kasischke E. S. et al., Postfire response of North American boreal forest net primary productivity analyzed with satellite observations, Global Change Biology, 2003, Vol. 9, pp. 1145–1157, https://doi.org/10.1046/j.1365-2486.2003.00658.x.
  26. Im S., Spatial analysis of vegetation cover response to climate trends in Khakassia (South Siberia), J. Mountain Science, 2023, Vol. 20, No. 10, pp. 2869–2884, https://doi.org/10.1007/s11629-023-8096-4.
  27. Jin Y., Randerson J. T., Goetz S. J. et al., The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests, J. Geophysical Research, 2012, Vol. 117, Article G01036, https://doi.org/10.1029/2011JG001886.
  28. Kharuk V. I., Ranson K. J., Kozuhovskaya A. G. et al., NOAA/AVHRR satellite detection of Siberian silkmoth outbreaks in eastern Siberia, Intern. J. Remote Sensing, 2004, Vol. 25, No. 24, pp. 5543–5555, https://doi.org/10.1080/01431160410001719858.
  29. Kharuk V. I., Ponomarev E. I., Ivanova G. A. et al., Wildfires in the Siberian taiga, Ambio, 2021, Vol. 50, pp. 1953–1974, https://doi.org/10.1007/s13280-020-01490-x.
  30. Kharuk V. I., Shvetsov E. G., Buryak L. V. et al., Wildfires in the Larch Range within permafrost, Siberia, Fire, 2023, Vol. 6, Article 301, https://doi.org/10.3390/fire6080301.
  31. Krylov A., McCarty J. L., Potapov P. et al., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environmental Research Letters, 2014, Vol. 9, Article 105007, https://doi.org/10.1088/1748-9326/9/10/105007.
  32. Kukavskaya E. A., Buryak L. V., Shvetsov E. G. et al., The impact of increasing fire frequency on forest transformations in southern Siberia, Forest Ecology and Management, 2016, Vol. 382, pp. 225–235, https://doi.org/10.1016/j.foreco.2016.10.015.
  33. Leskinen P., Lindner M., Verkerk P. J. et al., Russian forests and climate change: What science can tell us, European Forest Inst., 2020, 140 p., https://doi.org/10.36333/wsctu11.
  34. McLauchlan K. K., Higuera P. E., Miesel J. et al., Fire as a fundamental ecological process: Research advances and frontiers, J. Ecology, 2020, Vol. 108, pp. 2047–2069, https://doi.org/10.1111/1365-2745.13403.
  35. Shvetsov E. G., Kukavskaya E. A., Buryak L. V., Barrett K., Assessment of post-fire vegetation recovery in Southern Siberia using remote sensing observations, Environmental Research Letters, 2019, Vol. 14, Article 055001, https://doi.org/10.1088/1748-9326/ab083d.
  36. Shvetsov E. G., Kukavskaya E. A., Shestakova T. A. et al., Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region, Environmental Research Letters, 2021, Vol. 16, Article 115007, https://doi.org/10.1088/1748-9326/ac2e37.
  37. Sun Q., Burrell A., Barrett K. et al., Climate variability may delay post-fire recovery of boreal forest in Southern Siberia, Russia, Remote Sensing, 2021, Vol. 13, Article 2247, https://doi.org/10.3390/rs13122247.
  38. Tomshin O., Solovyev V., Spatio-temporal patterns of wildfires in Siberia during 2001–2020, Geocarto Intern., 2021, Vol. 37, No. 25, pp. 7339–7357, https://doi.org/10.1080/10106049.2021.1973581.
  39. Vermote E. F., Roger J. C., Ray J. P., MODIS Surface Reflectance User’s Guide, Version 1.5, MODIS Land Surface Reflectance Science Computing Facility, Washington, DC: NASA, 2020, 40 p., https://doi.org/10.5067/MODIS/MOD09A1.061.