Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 47-59
Detection of small-scale forest canopy variability in satellite panchromatic images based on brightness difference adjacency matrix
M.G. Aleksanina
1, 2 , A.V. Khramtsova
1, 2 1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
Accepted: 12.08.2024
DOI: 10.21046/2070-7401-2024-21-4-47-59
In the example of the problem of detecting single-tree felling in satellite images of forest canopy, we solve the problem of searching for optimal features that identify the presence of changes in panchromatic images regardless of the observation conditions. The initial data are panchromatic images of the Geoton-L1 instrument from the Russian Resurs-P satellite (spatial resolution 0.7 m). We propose an approach based on the adjacency matrix, but not of brightness, as in the classical case, but of brightness differences for a given displacement vector on which the difference is considered; and not for a single image, but for a pair of images. Thus, the frequency of transition of a certain difference of the first image into a certain difference of the second image is considered. Absence of any significant changes in the structure of images is manifested in the matrix of brightness difference adjacency, in that non-zero values of frequencies are concentrated along its diagonal. If even small spatial changes in brightness appear, “anomalous” frequencies appear — non-zero frequency values outside the diagonal. This feature is used to identify changes of the “felling” type. When comparing pairs of satellite images acquired at close angles of the survey and the sun above the horizon, the approach finds areas of change in brightness differences well. If the angles differ significantly, artifacts — false felling — appear. Anomalous changes in brightness differences can be both in areas of potentially real felling, and due to a mismatch between the shooting angles and the sun above the horizon. In this case, it is necessary to analyze the stability of the identified anomalies according to the sequence of adjacency matrices of changes in brightness differences from three images. To confirm the reliability of the felling and clarify its boundaries, the brightness anomaly calculations are used for different displacement vectors.
Keywords: satellite images, small-scale variability, texture, brightness differential, changes in the magnitude of the brightness difference, frequency matrix, single felling
Full textReferences:
- Aleksanin A. I., Kim V., Morozov M. A., Fomin E. V. (2019a), Individual tree logging detection by shadows in Geoton sensor imagery of the Resurs-P satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 174–182 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-174-182.
- Aleksanin A. I., Morozov M. A., Fomin E. V. (2019b), The problems of image superimposition with one-pixel accuracy, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 9–16 (in Russian), DOI: 10.21046/2070-7401-2019-16-1-9-16.
- Aleksanina M. G., Khramtsova A. V., Statistics of changes in brightness of two images to search for small-scale changes according to data from the Resurs-P satellite, Materialy 20-i Mezhdunarodnoi konferentsii ”Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 20th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow: IKI RAS, 2022, p. 11 (in Russian), DOI: 10.21046/20DZZconf-2022a.
- Bartalev S. A., Kuryatnikova T. S., Stibig Kh. Yu., Methods for the analysis of time-series of high-resolution satellite images for the assessment of logging in the taiga, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Issue 2, Vol. 2, pp. 217–227 (in Russian).
- Bartalev S. A., Egorov V. A., Zharko V. O., Lupyan E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
- Borzov S. M., Potaturkin O. I., Vegetative cover type classification using hyperspectral remote sensing, Vestnik NGU, Seriya: Informatsionnye tekhnologii, 2014, Vol. 12, No. 4, pp. 13–22 (in Russian).
- Borzov S. M., Potaturkin O. I., Improving the efficiency of hyperspectral image classification through multi-scale spatial processing, Komp’yuternaya optika, 2020, Vol. 44, No. 6, pp. 937–943 (in Russian), DOI: 10.18287/2412-6179-CO-779.
- Borzov S. M., Uzilov S. B., Detection of subtle anthropogenic changes in vegetation covermultispectral multi-temporal images, Vychislitel’nye tekhnologii, 2016, Vol. 21, No. 1, pp. 40–48 (in Russian).
- Borzov S. M., Potaturkin A. O., Potaturkin O. I., Fedotov A. M., Study of the efficiency of classification of hyperspectral satellite images of natural and anthropogenic areas, Avtometriya, 2016, Vol. 52, No. 1, pp. 3–14 (in Russian), DOI: 10.18287/2412-6179-CO-779.
- Gonzalez R.C., Woods R.E., Eddins S. L., Digital Image Processing Using MATLAB, Dorling Kindersley Pvt Ltd, 2006, 620 p.
- Kolodnikova N. V., Overview of texture features for pattern recognition tasks, Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2004, Vol. 9, No. 1, pp. 113–123 (in Russian).
- Miklashevich T. S., Bartalev S. A., Method for estimating vegetation cover phenological characteristics from satellite data time series, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 9–24 (in Russian), DOI: 10.21046/2070-7401-2016-13-1-9-24.
- Pratt W. K., Digital image processing. New York: John Wiley and Sons Inc., 1978, 750 p.
- Sidorova V. S., Unsupervised texture image classification, Interekspo Geo-Sibir’, 2007, No. 3, pp. 178–183 (in Russian).
- Starovoitov A. V., Fattakhov A. V., Yachmeneva E. A. et al., Estimating deforestation volumes using remote sensing data, Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki, 2021, Vol. 163, No. 4, pp. 591–602 (in Russian), DOI: 10.26907/2542-064X.2021.4.
- Tymchuk A. I., On texture features in the problem of segmentation of aerial photographs based on brightness dependence matrices) Kibernetika i programmirovanie, 2018, No. 6, pp. 31–39 (in Russian), DOI: 10.25136/2306-4196.2018.6.28395.
- Haralick R. M., Statistical and structural approaches to texture, Proc. IEEE, 1979, Vol. 67, Issue 5, pp. 786–804, DOI:10.1109/PROC.1979.11328.
- Khramtsova A. V., Aleksanina M. G., Detection of fellings based on the adjacency matrix of brightness differences using the example of images from the Resurs-P satellite, Materialy 19-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 19th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow: IKI RAS, 2021, pp. 389 (in Russian), DOI: 10.21046/19DZZconf-2021a.
- Afaq Y., Manocha A., Analysis on change detection techniques for remote sensing applications: A review, Ecological Informatics, 2021, Vol. 63, Article 101310, https://doi.org/10.1016/j.ecoinf.2021.101310.
- Bromiley P., Thacker N., Courtney P., Non-parametric image subtraction using grey level scattergrams, Image and Vision Computing, 2002, Vol. 20, No. 9–10, pp. 609–617, https://doi.org/10.1016/S0262-8856(02)00050-1.
- Khan S. H., He X., Porikli F., Bennamoun M., Forest change detection in incomplete satellite images with deep neural networks, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, pp. 5407–5423, DOI: 10.1109/TGRS.2017.2707528.
- Li F., Zeng Y., Luo J., Ma R., Wu B., Modeling grassland aboveground biomass using a pure vegetation index, Ecological Indicators, 2016, Vol. 62, pp. 279–288, DOI: 10.1016/j.ecolind.2015.11.005.
- Matosak B. M., Fonseca L. M. G., Taquary E. C. et al., Mapping deforestation in cerrado based on hybrid deep learning architecture and medium spatial resolution satellite time series, Remote Sensing, 2022, Vol. 14, No. 1, Article 209, https://doi.org/10.3390/rs14010209.
- Miettinen J., Shi Ch., Liew S. Ch., Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990, Global Ecology and Conservation, 2016, Vol. 6, pp. 67–78, DOI: 10.1016/j.gecco.2016.02.004.
- Milne K., Change direction analysis using landsat imagery: A Review of methodology, Intern. Geoscience and Remote Sensing Symp. “Remote Sensing: Moving Toward the 21 st Century”, 1988, pp. 541–544, https://doi.org/10.3390/rs12111781.
- Townshend J. R. G., Justice C. O., Gurney C., McManus J., The impact of misregistration on change detection, IEEE Trans. Geoscience Remote Sensing, 1992, Vol. 30, pp. 1054–1060, DOI: 10.1109/36.175340.
- Wijaya A., Application of multi-stage classification to detect illegal logging with the use of multi-source data: A case study in labanan forest management unit, East Kalimantan, Indonesia, PhD Thesis, Faculty of Geo-Information Science and Earth Observation, Department of Urban and Regional Planning and Geo-Information Management, 2005, 64 p., https://doi.org/10.3990/1.323024368.