ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 4, pp. 275-283

Comparison of ground-based and satellite measurements of CO2 in Peterhof

A.A. Nikitenko 1 , Yu.M. Timofeev 1 , Ya.A. Virolainen 1 , A.N. Rublev 2 , V.V. Golomolzin 3 , Yu.V. Kiseleva 2 , A.B. Uspensky 2 , D.A. Kozlov 4 
1 Saint Petersburg State University, Saint Petersburg, Russia
2 State Research Center for Space Hydrometeorology “Planeta”, Moscow, Russia
3 Siberian Center of SRC "Planeta", Novosibirsk, Russia
4 State Scientific Center of the Russian Federation "Keldysh Research Center", Moscow, Russia
Accepted: 22.07.2024
DOI: 10.21046/2070-7401-2024-21-4-275-283
Regular monitoring of CO2 content is necessary to study current changes in the Earth’s climate and the factors influencing them. Determining anthropogenic CO2 emissions are based on satellite and ground-based measurements of spatiotemporal variations of CO2 total content. At the same time, the requirements for measurement errors of CO2 total content (XCO2) are very high (~0.5–1.0 ppm or less than 0.25 %). The paper compares the XCO2 data derived from satellite measurements of outgoing thermal Infrared (IR) radiation by the IKFS-2 Infrared Fourier spectrometer aboard the Russian Meteor-M No.2 meteorological satellite and ground-based measurements of solar radiation in the Near-Infrared (NIR) range by the Bruker IFS 125HR Fourier spectrometer with high spectral resolution in Peterhof performed by Saint Petersburg State University in 2019–2022. Ground-based measurements by the Bruker IFS 125HR were previously calibrated using a secondary international standard by the mobile Bruker/SUN Fourier spectrometer before comparisons with satellite measurements. Differences in XCO2 values retrieved by satellite and ground-based methods are within ~1 %.
Keywords: CO2 content, monitoring, CO2 variation, ground-based spectroscopic measurements, validation, satellite measurements, IKFS-2, Bruker IFS 125HR, thermal radiation method
Full text

References:

  1. Arshinov M. Yu., Belan B. D., Davydov D. K., Krekov G. M., Fofonov A. V., Babchenko S. V., Inoue G., Machida T., Maksutov Sh., Sasakawa M., Shimoyama K., The dynamics in vertical distribution of greenhouse gases in the atmosphere, Optika atmosfery i okeana, 2012, Vol. 25, No. 12, pp. 1051–1061 (in Russian).
  2. Golomolzin V. V., Rublev A. N., Kiseleva Yu. V., Kozlov D. A., Prokushkin A. S., Panov A. V., Determination of the total carbon dioxide content over the territory of Russia based on data from the Meteor-M No. 2 satellite, Russian Meteorology and Hydrology, 2022, No. 4, pp. 79–95 (in Russian).
  3. Timofeev Yu. M., Berezin I. A., Virolainen Ya. A. et al., Spatial-temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 1, pp. 59–64, DOI: 10.1134/S0001433819010109.
  4. A guidebook on the use of satellite greenhouse gases observation data to evaluate and improve greenhouse gas emission inventories, 1st ed., Matsunaga T., Maksyutov S. (eds.), Satellite Observation Center, National Inst. for Environmental Studies, Japan, 2018, 129 p.
  5. Cortesi U. et al., KLIMA-IASI sensitivity assessment report, final report for phase 1 of the project sensitivity analysis and application of KLIMA algorithms to GOSAT and OCO validation, 2009, ESA-ESRIN contract N. 21612/08/I-OL.
  6. Cortesi U., Del Bianco S., Gai M., Carli B., Carbon dioxide retrieval from IASI measurements using the KLIMA inversion algorithm, Proc. ESA Living Planet Symp., 2010, Vol. ESA SP-686, Article 468, https://www.researchgate.net/publication/229012858.
  7. Cortesi U., Bianco S. D., Gai M., Laurenza L. M., Ceccherini S., Carli B., Barbara F., Buchwitz M., KLIMA-IASI final report of project: Sensitivity analysis and application of KLIMA algorithms to GOSAT and OCO validation, Technical, Scientific and Research Reports, 2014, Vol. 6, ESA-ESRIN/Contract n. 21612/08/I-OL, 153 p.
  8. Diao A., Shu J., Song C., Gao W., Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements, Frontiers in Earth Science, 2017, Vol. 11, pp. 1–10, https://doi.org/10.1007/s11707-016-0573-4.
  9. Frankenberg C., Kulawik S. S., Wofsy S. C. et al., Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide, Atmospheric Chemistry and Physics, 2016, Vol. 16, No. 12, pp. 7867–7878, DOI: 10.5194/acp-16-7867-2016.
  10. García O. E., Sepúlveda E., Schneider M. et al., Consistency and quality assessment of the MetOp-A/IASI and MetOp-B/IASI operational trace gas products (O3, CO, N2O, CH4, and CO2) in the subtropical North Atlantic, Atmospheric Measurement Techniques, 2016, Vol. 9, No. 5, pp. 2315–2333, https://doi.org/10.5194/amt-9-2315-2016.
  11. Kulawik S. S., Jones D. B. A., Nassar R. et al., Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science, Atmospheric Chemistry and Physics, 2010, Vol. 10, No. 12, pp. 5601–5623, DOI: 10.5194/acp-10-5601-2010.
  12. Maddy E. S., Barnet C. D., Goldberg M. et al., CO2 retrievals from the atmospheric infrared sounder: methodology and validation, J. Geophysical Research, 2008, Vol. 113, Issue D11, DOI: 10.1029/2007JD009402.
  13. Nalli N. R., Tan C., Warner Ju. et al., Validation of carbon trace gas profile retrievals from the NOAA-unique combined atmospheric processing system for the cross-track infrared sounder, Remote Sensing, 2020, Vol. 12, No. 19, Article 3245, DOI: 10.3390/rs12193245.
  14. Noel S., Bovensmann H., Wuttke M. W. et al., Nadir, limb, and occultation measurements with SCIAMACHY, Advances in Space Research, 2002, Vol. 29, No. 11, pp. 1819–1824, https://doi.org/10.1016/S0273-1177(02)00102-3.
  15. O’Dell C., Eldering A., Gunson M. et al., Improvements in XCO2 accuracy from OCO-2 with the latest ACOS v10 product, vEGU21, 23 rd EGU General Assembly, 2021, Article EGU21-10484, DOI: 10.5194/egusphere-egu21-10484.
  16. Pachauri R. K., Allen M. R., Barros V. R., Climate change 2014: synthesis report, Contribution of working groups I, II and III to the Fifth assessment report of the intergovernmental panel on climate change, R. K. Pachauri, L. A. Meyer (eds.), Geneva, Switzerland: IPCC, 2014, 151 p.
  17. Peiro H., Crowell S., Schuh A. et al., Four years of global carbon cycle observed from OCO-2 version 9 and in situ data, and comparison to OCO-2 v7, Atmospheric Chemistry and Physics, 2022, Vol. 22, No. 2, pp. 1097–1130, https://doi.org/10.5194/acp-22-1097-2022.
  18. Suto H., Kataoka F., Kikuchi N. et al., Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit, Atmospheric Measurement Techniques, 2021, Vol. 14, pp. 2013–2039, https://doi.org/10.5194/amt-14-2013-2021.
  19. Taylor T. E., O’Dell C. W., Crisp D. et al., An 11-year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm, Earth System Science Data, 2022, Vol. 14, No. 1, pp. 325–360, https://doi.org/10.5194/essd-14-325-2022.
  20. Timofeyev Y., Virolainen Y., Makarova M. et al., Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia), J. Molecular Spectroscopy, 2016, Vol. 323, pp. 2–14, DOI: 10.1016/j.jms.2015.12.007.
  21. Uspensky A. B., Rublev A. N., Kozlov D. A. et al., Monitoring of the essential climate variables of the atmosphere from satellite-based infrared sounder IKFS-2, Russian Meteorology and Hydrology, 2022, Vol. 47, No. 11, pp. 819–828, https://doi.org/10.3103/S1068373922110012.
  22. Wunch D., Toon G. C., Blavier J-F. L. et al., The total carbon column observing network, Philosophical Trans. A, 2011, Vol. 369, pp. 2087–2112, https://doi.org/10.1098/rsta.2010.0240.
  23. Yang H., Feng G., Xiang R. et al., Spatio-Temporal Validation of AIRS CO2 Observations Using GAW, HIPPO and TCCON, Remote Sensing, 2020, Vol. 12, No. 21, Article 3583, https://doi.org/10.3390/rs12213583.
  24. Zhou L., Divakarla M., Liu X., An overview of the Joint Polar Satellite System (JPSS) science data product calibration and validation, Remote Sensing, 2016, Vol. 8, No. 2, Article 139, https://doi.org/10.3390/rs8020139.