ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 221-233

Mesoscale eddies on the continental slope of the New Zealand Plateau based on altimetry data

V.S. Travkin 1, 2 , V.G. Gnevyshev 3 , T.V. Belonenko 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
2 N. N. Zubov’s State Oceanographic Institute, Moscow, Russia
3 P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia
Accepted: 17.05.2024
DOI: 10.21046/2070-7401-2024-21-3-221-233
The aim of the study is to describe the features of vortex dynamics on the slope of the New Zealand Plateau. It has been established that on the southeastern slope of the New Zealand Plateau, vortex dynamics manifest in the eastward movement of two mesoscale vortex systems — cyclones and anticyclones, with anticyclones moving along the upper boundary of the continental slope and cyclones along the lower boundary. It is shown that the wave approach and exponential profile model allow describing the main characteristics of Rossby topographic waves propagating along the slope of the New Zealand Plateau. The bottom topography of the studied area is characterized by the following features: the New Zealand Plateau, located at a depth of approximately 500 m, sharply drops off to the southeast with a steep slope, beyond which lies the continental basin with depths reaching 5000 m. The gradients of depth changes in the transitional zone from the plateau to the continental basin are 3.75•10 -2. Using the open data available on the CMEMS (Copernicus Marine Environment Monitoring Service) portal, we investigated the characteristics of vortex dynamics in this region. Estimates of the kinematic and dynamic parameters of vortices propagating on the slope of the New Zealand Plateau were obtained. It is shown that the wave approach and exponential profile model allow describing the main characteristics of Rossby topographic waves propagating along the slope of the New Zealand Plateau. For the exponential topography model, a calculation of the spectral eigenvalue problem was performed. Dispersion patterns, dependencies on wave number of phase and group velocities, and flow functions for two modes were constructed. It is demonstrated that the parameters of the vortices correspond to the central part of the dispersion curves, confirming the hypothesis of the topographic origin of the New Zealand Plateau vortices.
Keywords: New Zealand Plateau, Rossby topographic waves, mesoscale eddies, altimetry, exponential model
Full text

References:

  1. ) 1. Gnevyshev V. G., Belonenko T. V., Doppler effect and Rossby waves in the ocean: A brief history and new approaches, Fundamental and Applied Hydrophysics, 2023, Vol. 16, No. 3, pp. 72–92 (in Russian), DOI:10.59887/2073-6673.2023.16(3)-6.
  2. Gnevyshev V. G., Frolova A. V., Kubryakov A. A., Sobko Yu. V., Belonenko T. V., Interaction between Rossby Waves and a Jet Flow: Basic Equations and Verification for the Antarctic Circumpolar Current, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 5, pp. 412–422, DOI: 10.1134/S0001433819050074.
  3. Gnevyshev V. G., Travkin V. S., Belonenko T. V. (2023a), Topographic Factor and Limit Transitions in the Equations for Subinertial Waves, Fundamental and Applied Hydrophysics, 2023, Vol. 16, No. 1, pp. 8–23, DOI: 10.48612/fpg/92rg-6t7h-m4a2.
  4. Gnevyshev V. G., Travkin V. S., Belonenko T. V. (2023b), Group Velocity and Dispertion of Buchwald and Adams Shelf Waves, A New Analytical Approach, Fundamental and Applied Hydrophysics, 2023, Vol. 16, No. 2, pp. 8–20 (in Russian), DOI: 10.59887/2073–6673.2023.16(2)-1.
  5. Larichev V. D., Reznik G. M., On two-dimensional solitary Rossby waves, Reports of the Academy of Sciences of the USSR, 1976, Vol. 231, No. 5, pp. 1077–1079 (in Russian).
  6. Le Blond P. H., Mysak L. A., Waves in the ocean, Elsevier Scientific Publishing Company, 1978, 602 p.
  7. Mikaelyan A. S., Zatsepin A. G., Kudryakov A. A., The impact of mesoscale vortex dynamics on the bioproductivity of marine ecosystems (review), Marine Hydrophysical J., 2020, Vol. 36, No. 6, pp. 646–675 (in Russian), DOI:10.22449/0233-7584-2020-6-646-675.
  8. Travkin V. S., Belonenko T. V., Kochnev A. V., Topographic waves in the Kuril region. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 222–234 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-222-234.
  9. Abellan L. J. L., Patagonian toothfish in international waters of the southwest Indian Ocean (Statistical Area 51), CCAMLR Science, 2005. No. 12, pp. 207–214.
  10. Buchwald V. T., Adams J. K., The propagation of continental shelf waves, Proc. Royal Society A: Mathematical, Physical and Engineering Sciences, 1968, Vol. 305, No. 1481, pp. 235–250, DOI: 10.1098/rspa.1968.0115.
  11. Collins M. A., Brickle P., Brown J., Belchier M., Chapter four — The Patagonian toothfish: biology, ecology and fishery, In: Advances in Marine Biology, 2010, Vol. 58, pp. 227–300, https://doi.org/10.1016/B978-0-12-381015-1.00004-6.
  12. De Witt H. H., Heemstra P. C., Gon O., Nototheniidae, In: Fishes of the Southern Ocean, O. Gon, P. C. Heemstra (eds.), J. L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, 1990, pp. 279–331, https://doi.org/10.5962/bhl.title.141868.
  13. Drivdal M., Weber J. E. H., Debernard J. B., Dispersion relation for continental shelf waves when the shallow shelf part has an arbitrary width: application to the shelf west of Norway, J. Physical Oceanography, 2016, Vol. 46, No. 2, pp. 537–549, DOI: 10.1175/jpo-d-15-0023.1.
  14. Eastman J. T., Antarctic fish Biology: Evolution in a Unique Environment, San Diego: Academic Press, 1993.
  15. Gnevyshev V. G., Frolova A. V., Koldunov A. V., Belonenko T. V., Topographic effect for rossby waves on a zonal shear flow, Fundamental and Applied Hydrophysics, 2021, Vol. 14, No. 1, pp. 4–14, DOI: 10.7868/S2073667321010019.
  16. Gnevyshev V. G., Frolova A. V., Belonenko T. V., Topographic effect for Rossby waves on non-zonal shear flow, Water Resources, 2022, Vol. 49, No. 2, pp. 240–248, DOI: 10.1134/S0097807822020063.
  17. Hanchet S. M., Mormede S., Dunn A., Distribution and relative abundance of Antarctic toothfish (Dissostichus mawsoni) on the Ross Sea shelf, CCAMLR Science, 2010, No. 17, pp. 33–51.
  18. Kuhn K. L., Gaffney P. M., Population subdivision in the Antarctic toothfish (Dissostichus mawsoni) revealed by mitochondrial and nuclear single nucleotide polymorphisms (SNPs), Antarctic Science, 2008, No. 20, pp. 327–338, DOI: 10.1017/s0954102008000965.
  19. Meleshko V. V., Heijst G. J.F., On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid, J. Fluid Mechanics, 1994, Vol. 272, pp. 157–182, DOI: 10.1017/s0022112094004428.
  20. Mikaelyan A. S., Zatsepin A. G., Kubryakov A. A. et al., Case where a mesoscale cyclonic eddy suppresses primary production: A Stratification-Lock hypothesis, Progress in Oceanography, 2023, Vol. 212, Article 102984, https://doi.org/10.1016/j.pocean.2023.102984.
  21. Orlandi P., Vortex dipole rebound from a wall, Physics of Fluids A: Fluid Dynamics, 1990, Vol. 2, No. 8, pp. 1429–1436, DOI: 10.1063/1.857591.
  22. Pegliasco C., Busché C., Faugère Y., Mesoscale eddy trajectory atlas META3.2 delayed-time all satellites: version META3.2 DT allsat, 2022, https://doi.org/10.24400/527896/A01-2022.005.210802.
  23. Stern M. E., Minimal properties of planetary eddies, J. Marine Research, 1975, Vol. 33, Issue 1, pp. 1–13, https://elischolar.library.yale.edu/journal_of_marine_research/1307.
  24. Stevens D. W., Dunn M. R., Pinkerton M. H., Forman J. S., Diet of Antarctic toothfish (Dissostichus mawsoni) from the continental slope and oceanic features of the Ross Sea region, Antarctica, Antarctic Science, 2014, No. 26, pp. 502–512, https://doi.org/10.1017/S095410201300093X.
  25. Yates P., Ziegler P., Welsford D. et al., Distribution of Antarctic toothfish Dissostichus mawsoni along East Antarctica: Environmental drivers and management implications, Fisheries Research, 2019, No. 219, Article 105338, DOI: 10.1016/j.fishres.2019.105338.