ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 131-144

Potential possibilities for remote detection of fertility parameters of arable soils based on spectral reflectance of their surface and data on its temperature

E.Yu. Prudnikova 1 , I.Yu. Savin 1 
1 V.V. Dokuchaev Soil Science Institute, Moscow, Russia
Accepted: 15.05.2024
DOI: 10.21046/2070-7401-2024-21-3-131-144
Remote assessment of the properties of arable soils is based on the relationship between these properties and soil spectral reflectance. The detection of fertility parameters of arable soils from remote data is complicated by the fact that not all of these parameters have a direct effect on soil spectral reflectance. The article discusses the information content of various sets of spectral parameters of optical and thermal ranges for detecting fertility parameters of arable soils on the example of a test field with leached chernozems located in Serebryano-Prudsky District of Moscow Region. At the same time, both the open surface of soils and crops were analyzed. The best models using the most common spectral indices and ratios calculated from optical data were obtained for organic matter (Rcv2 (cross-validated coefficient of determination) = 0.50, RPIQ (ratio of performance to interquartile distance) = 1.84) and the mass fraction of phosphorus compounds (Rcv2 = 0,49, RPIQ = 1.16). With the combined use of optical and thermal data, models of higher accuracy and predictive power were obtained in some cases. For the content of organic matter Rcv2 increased to 0.64, RPIQ to 2.23, for the mass fraction of phosphorus compounds Rcv2 increased to 0.53, RPIQ to 1.33. Using an additional set of parameters in the optical range, including 102 combinations, made it possible to obtain models for all analyzed properties with Rcv2 of the best models in the region of 0.72–0.87 and RPIQ in the region of 1.52–3.34. In addition, for a number of properties, it was possible to obtain reliable models with high predictive ability only after using an additional set of parameters. In general, the spectral reflectance of the open soil surface turned out to be more informative than the spectral reflectance of winter wheat crops at the germination stage.
Keywords: fertility parameters of arable soils, spectral reflectance, optical range, thermal range, Sentinel-2
Full text

References:

  1. GOST 26423-85. Pochvy. Metody opredeleniya udel’noi elektricheskoi provodimosti, pH i plotnogo ostatka vodnoi vytyazhki (Soils. Methods for determination of specific electric conductivity, pH and solid residue of water extract), Moscow: Standartinform, 2011, 4 p. (in Russian).
  2. GOST 26483-85. Pochvy. Prigotovlenie solevoi vytyazhki i opredelenie ee pH po metodu TsINAO (Soils. Preparation of salt extract and determination of its pH by CINAO method), Moscow: Standards Publ. House, 1985, 5 p. (in Russian).
  3. GOST 26213-84. Pochvy. Metody opredeleniya organicheskogo veshchestva (Soils. Methods for determination of organic matter), Moscow: Standards Publ. House, 1992, 6 p. (in Russian).
  4. GOST R 54650-2011. Pochvy. Opredelenie podvizhnykh soedinenii fosfora i kaliya po metodu Kirsanova v modifikatsii TsINAO (Soils. Determination of mobile phosphorus and potassium compounds by Kirsanov method modified by CINAO), Moscow: Standards Publ. House, 1992, 4 p. (in Russian).
  5. GOST 26210-91. Pochvy. Opredelenie obmennogo kaliya po metodu Maslovoi (Soils. Determination of exchangeable potassium by Maslova method), Moscow: Standartinform, 2013, 7 p. (in Russian).
  6. GOST 26951-86. Pochvy. Opredelenie nitratov ionometricheskim metodom (Soils. Determination of nitrates by ionometric method), Moscow: Standards Publ. House, 1986, 7 p. (in Russian).
  7. GOST 26107-84, p. 4.1. Pochvy. Metody opredeleniya obshchego azota (Soils. Methods for determination of total nitrogen, p. 4.1), Moscow: Standards Publ. House, 1984, 8 p. (in Russian).
  8. Grubina P. G., Savin I. Yu., Prudnikova E. Yu., The possibilities of using thermal infrared imaging data for detecting the main parameters of arable soil fertility, Dokuchaev Soil Bull., 2020, No. 105, pp. 146–172 (in Russian), DOI: 10.19047/0136-1694-2020-105-146-172.
  9. Kir’yanova E. Yu., Savin I. Yu., Crop canopy heterogeneity detected based on MODIS satellite data as an indicator of contrast in soil patterns, Russian Agricultural Sciences, 2013, Vol. 4, pp. 342–345.
  10. Kurganova I. N., Tipe R., The effect of freezing-thawing processes on soil respiration activity, Pochvovedenie, 2003, Vol. 36, No. 9, pp. 976–985.
  11. Metodicheskie ukazaniya po provedeniyu kompleksnogo monitoringa plodorodiya pochv zemel’ sel’skokhozyaistvennogo naznacheniya (Guidelines for conducting comprehensive monitoring of soil fertility in agricultural lands), Moscow: FGNU “Rosinformagrotech”, 2003, 240 p. (in Russian).
  12. Orlov D. S., Biryukova O. N., Ryzhova I. M., Dependence of humus reserves on the duration of the period of biological activity of soils, Pochvovedenie, 1997, No. 7, pp. 818–822.
  13. Orlov D. S., Sukhanova N. I., Rozanova M. S., Spektral’naya otrazhatel’naya sposobnost’ pochv i ikh komponentov (Spectral reflectivity of soils and their components), Moscow: MSU Publ. House, 2001, 176 p. (in Russian).
  14. Prudnikova E. Yu., Savin I. Yu., Grubina P. G., Satellite based assessment of agronomically important properties of agricultural soils with consideration of their surface state. Dokuchaev Soil Bull. 2023, No. 115, pp. 129–159 (in Russian), DOI: 10.19047/0136-1694-2023-115-129-159.
  15. Rukovodstvo po laboratornym metodam issledovaniya ionno-solevogo sostava neitral’nykh i shchelochnykh mineral’nykh pochv (Guidelines for Laboratory Methods for Studying the Ion-Salt Composition of Neutral and Alkaline Mineral Soils), N. B. Khitrov, A. A. Ponizovskii (eds.), Moscow: V. V. Dokuchaev Soil Science Institute, 1990, 235 p. (in Russian).
  16. Savin I. Yu., Vindeker G. V., Some specifics in using optical properties of soil surface for moisture detection, Eurasian Soil Science, 2021, Vol, 54, No. 7, pp. 1019–1027, DOI: 10.1134/S1064229321070127.
  17. Bellinaso H., Demattê J. A.M., Romeiro S. A., Soil spectral library and its use in soil classification, Revista Brasileira de Ciência do Solo, 2010, Vol. 34, pp. 861–870, DOI: 10.1590/S0100-06832010000300027.
  18. Bulan R., Sitorus A., Vis-NIR spectra combined with machine learning for predicting soil nutrients in cropland from Aceh Province, Indonesia, Case Studies in Chemical and Environmental Engineering, 2022, Vol. 6, Article 100268, DOI: 10.1016/j.cscee.2022.100268.
  19. Demattê J. A., Ramirez-Lopez L., Marques K. P. P., Rodella A. A., Chemometric soil analysis on the determination of specific bands for the detection of magnesium and potassium by spectroscopy, Geoderma, 2017, Vol. 288, pp. 8–22, https://doi.org/10.1016/j.geoderma.2016.11.013.
  20. Fang Q., Hong H., Zhao L. et al., Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: A review, J. Spectroscopy, 2018, Vol. 2018, pp. 1–14, DOI: 10.1155/2018/3168974.
  21. Gholizadeh A., Saberioon M., Carmon N. et al., Examining the performance of PARACUDA-II data-mining engine versus selected techniques to model soil carbon from reflectance spectra, Remote Sensing, 2018, Vol. 10(8), Article 1172, DOI: 10.3390/rs10081172.
  22. Kuang B., Mahmood H. S., Quraishi M. Z. et al., Sensing soil properties in the laboratory, in situ, and on-line: a review, Advances in Agriculture, 2012, Vol. 114, pp. 155–223, DOI: 10.1016/B978-0-12-394275-3.00003-1.
  23. Lesaignoux A., Fabre S., Briottet X., Olioso A., Belin E., Influence of surface soil moisture on spectral reflectance of bare soil in the 0.4–15 μm domain, Geosciences and Remote Sensing Letters, 2011, Vol. 8(1), pp. 143–147.
  24. Mouazen A. M., Kuang B., On-line visible and near infrared spectroscopy for in-field phosphorous management, Soil and Tillage Research, 2016, Vol. 155, pp. 471–477, DOI: 10.1016/j.still.2015.04.003.
  25. Prudnikova E., Savin I., Some peculiarities of arable soil organic matter detection using optical remote sensing data, Remote Sensing, 2021, Vol. 13(12), Article 2313, DOI: 10.3390/rs13122313.
  26. Soriano-Disla J. M., Janik L. J., Rossel R. A. V. et al., The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties, Applied Spectroscopy Reviews, 2014, Vol. 49, pp. 139–186, DOI: 10.1080/05704928.2013.811081.
  27. Stenberg B., Viscarra Rossel R. A., Mouazen A. M., Wetterlind J., Visible and near-infrared spectroscopy in soil science, Advances in Agriculture, 2010, Vol. 107, pp. 163–215, DOI: 10.1016/S0065-2113(10)07005-7.
  28. Trontelj ml. J., Chambers O., Machine learning strategy for soil nutrients prediction using spectroscopic method, Sensors, 2021, Vol. 21(12), Article 4208, DOI: 10.3390/s21124208.
  29. Viscarra Rossel R. A., Walvoort D. J.J., McBratney A. B. et al., Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, 2006, Vol. 131, pp. 59–75, DOI: 10.1016/j.geoderma.2005.03.007.
  30. Wetterlind J., Stenberg B., Söderström M., Increased sample point density in farm soil mapping by local calibration of visible and near infrared prediction models, Geoderma, 2010, Vol. 156(3–4), pp. 152–60, DOI: 10.1016/j.geoderma.2010.02.012.