ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 171-187

Analysis of the relationship between structural and spectral-reflective characteristics of vegetation in arid grassland landscapes

S.S. Shinkarenko 1 , S.А. Bartalev 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 20.05.2024
DOI: 10.21046/2070-7401-2024-21-3-171-187
The article presents the results of comparing structural (canopy, above-ground phytomass) and spectral reflectance characteristics of pasture vegetation in arid landscapes of the southern European part of Russia using Sentinel-2 and MODIS data. Ground data were obtained in May 2020–2022 in the Astrakhan and Volgograd regions, Stavropol Krai, Republics of Kalmykia and Dagestan using standard geobotanical methods on 10×10 m plots. A significant correlation was found between the structural characteristics and brightness of 10-meter spatial resolution Sentinel-2 data, as well as vegetation indices NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index), PVI (Perpendicular Vegetation Index) and EVI (Enhanced Vegetation Index). The strongest significant correlation was observed between phytomass (R = 0.74, p < 0.001) and projective cover (R = 0.76, p < 0.001) with NDVI values. The division of vegetation into life forms of dominant species in phytocenoses, such as perennial grasses, subshrubs, annuals, and ephemerals, did not increase the strength of the correlation between structural and spectral reflectance characteristics. The separation of data by years of study allowed establishing a closer relationship between NDVI, canopy, and phytomass. The use of the non-parametric regression Random forest method increased the accuracy of phytomass determination (R 2 = 0.62 and R2 = 0.55) rather than projective cover. Adding such features as precipitation sums for the period preceding the obtained ground data and coefficients of VV- and VH-polarization backscatter from Sentinel-1 data did not improve the accuracy. Additionally, daily MODIS NDVI data with cloudiness influence removed were used in the study, thus helping to obtain NDVI values directly on the dates of field research. This provided a stronger correlation between structural and spectral reflectance characteristics compared to Sentinel-2 data, which had a time difference of up to 12 days compared to ground data. For all types of vegetation, a negative correlation with brightness in the visible and near-infrared ranges was observed, for the soil was brighter than the vegetation cover. Thus, spectral reflectance characteristics are determined not only by photosynthesizing phytomass but also by the degree of soil overlap with vegetation, including dried-up one. This may lead to uncertainties and weaken the correlation between structural and spectral reflectance characteristics.
Keywords: arid landscapes, pasture vegetation, spectrometry, vegetation indices, MODIS, Sentinel-2
Full text

References:

  1. Bartalev S. A., Khvostikov S. A., Certificate of state registration of a computer program No. 2023666251 Russian Federation, FORS-MachLearn, No. 2023664950, statement 07.14.2023, publ. 07.27.2023.
  2. Gasanov G. N., Asvarova T. A., Gadzhiev K. M. et al., Concentration and reserves of nitrogen in soils and plant matter in blocks of grass ecosystems of the North‐Western Precaspian region, Russia, South of Russia: ecology, development, 2023, Vol. 18, No. 2, pp. 33‐43 (in Russian), DOI: 10.18470/1992-1098-2023-2-33-43.
  3. Zolotokrylin A. N., Cherenkova E. A., Titkova T. B., Aridization of Drylands in the European Part of Russia: Secular Trends and Links to Droughts, Izvestiya Rossiiskoi akakemii nauk. Seriya geograficheskaya, 2020, Vol. 84, No. 2, pp. 207–217 (in Russian), DOI: 10.31857/S258755662002017X.
  4. Kashnitskii A. V., Burtsev M. A., Proshin A. A., Technology to create cloud-free composites from Sentinel-2 satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 76–85 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-76-85.
  5. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
  6. Miklashevich T. S., Bartalev S. A., Plotnikov D. E., Interpolation algorithm for the recovery of long satellite data time series of vegetation cover observation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 143–154 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-143-154.
  7. Nemtseva L. D., Bespalova L. A., Golubeva E. I., Mikhailov S. I., Assessment of the status of vegetation cover of dry steppe landscapes under the conditions of cattle grazing applying the methods of remote sensing of The Earth, Trudy Yuzhnogo nauchnogo tsentra Rossiiskoi akademii nauk, 2018, Vol. 7, pp. 151–164 (in Russian), DOI: 10.23885/1993-6621-2018-7-151-164.
  8. Rulev A. S., Kanishchev S. N., Shinkarenko S. S., Analysis of NDVI seasonal dynamics of natural vegetation of Low Trans-Volga in Volgograd Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 113–123 (in Russian), DOI: 10.21046/2070-7401-2016-13-20-113-123.
  9. Titkova T. B., Zolotokrylin A. N., Monitoring of lands affected by desertification in the Republic of Kalmykia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 130–141 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-130-141.
  10. Khoroshev A. V., Kalmykova O. G., Dusaeva G. Kh., Evaluation of the NDVI index as a source of information on aboveground phytomass in steppes, Issledovanie Zemli iz kosmosa, 2023, No. 3, pp. 27–43 (in Russian), DOI: 10.31857/S020596142303003X.
  11. Shinkarenko S. S., Changes in spectral reflectance characteristics of the Northern Caspian zonal landscapes under pyrogenic influence, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 192–206 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-192-206.
  12. Shinkarenko S. S., Bartalev S. A. (2020a), Consequences of dust storms in the south of the European part of Russia in September – October 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 270–275 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-270-275.
  13. Shinkarenko S. S., Bartalev S. A. (2020b), NDVI seasonal dynamics of the North Caspian pasture landscapes according to MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 179–194 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-179-194.
  14. Shinkarenko S. S., Bartalev S. A., Assessment of desertification area in the south of the European part of Russia in 2021, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 291–297 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-291-297.
  15. Shinkarenko S. S., Bartalev S. A., Long-term arid pasture landscapes NDVI dynamics in European Russia and adjacent territories, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 108–123 (in Russian), DOI: 10.21046/2070-7401-2022-19-6-108-123.
  16. Shinkarenko S. S., Bartalev S. A., Analysis of the influence of species composition, projective cover, and phytomass of arid landscape pasture vegetation on spectral reflectance properties based on ground measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 176–192 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-176-192.
  17. Shinkarenko S. S., Berdengalieva A. N., Bartalev S. A., Doroshenko V. V., Satellite monitoring of desertification processes in the south of European Russia in 2019–2022, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 319–327 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-319-327.
  18. Akagi S. K., Yokelson R. J., Wiedinmyer C. et al., Emission factors for open and domestic biomass burning for use in atmospheric, Atmospheric Chemistry and Physics, 2011, Vol. 11, pp. 4039–4072, DOI: 10.5194/acp-11-4039-2011.
  19. Andreae M. O., Emission of trace gases and aerosols from biomass burning — an updated assessment, Atmospheric Chemistry and Physics, 2019, Vol. 19, pp. 8523–8546, DOI: 10.5194/acp-19-8523-2019.
  20. Bondur V. G., Gordo K. A., Zima A. A., Satellite research of the effects of wildfires on various vegetation-cover types in Russia, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 12, pp. 1570-1580, DOI: 10.1134/S0001433822120076.
  21. Chu D., Aboveground biomass estimates of grassland in the North Tibet using MODIS remote sensing approaches, Applied Ecology and Environmental Research, 2020, Vol. 18, No. 6, pp. 7655–7672, DOI: 10.15666/aeer/1806_76557672.
  22. Golubyatnikov L. L., Kurganova I. N., Lopes de Gerenyu V. O., Estimation of Carbon Balance in Steppe Ecosystems of Russia, Izvestiya, Atmospheric and Oceanic Physics, 2023, Vol. 59, No. 1, pp. 63–77, DOI: 10.1134/S0001433823010048.
  23. Kulik K. N., Rulev A. S., Yuferev V. G., Geoinformation analysis of desertification dynamics in the territory of Astrakhan oblast, Arid Ecosystems, 2015, Vol. 5, No. 3, pp. 134–141, DOI: 10.1134/S2079096115030087.
  24. Kulik K. N., Petrov V. I., Yuferev V. G. et al., Geoinformational Analysis of Desertification of the Northwestern Caspian, Arid Ecosystems, 2020, Vol. 10, No. 2, pp. 98–105, DOI: 10.1134/S2079096120020080.
  25. Liu W., Xu C., Zhang Zh. et al., Machine learning-based grassland aboveground biomass estimation and its response to climate variation in Southwest China, Frontiers in Ecology and Evolution, 2023, Vol. 11, Article 1146850, DOI: 10.3389/fevo.2023.1146850.
  26. Loupian E., Burtsev M., Proshin A. et al., Usage Experience and Capabilities of the VEGA-Science System, Remote Sensing, 2022, Vol. 14, No. 1, Article 77, DOI: 10.3390/rs14010077.
  27. Manaenkov A. S., Rybashlykova L. P., Increasing the efficiency of plant-cover restoration in the modern focus of deflation on pastures of the Northwestern Caspian Region, Arid Ecosystems, 2020, Vol. 10, No. 4, pp. 358–367, DOI: 10.1134/S2079096120040149.
  28. Marabel M., Alvarez-Taboada F., Spectroscopic determination of aboveground biomass in grasslands using spectral transformations, support vector machine and partial least squares regression, Sensors, 2013, Vol. 13, No. 8, pp. 10027–10051, DOI: 10.3390/s130810027.
  29. Pordel F., Ebrahimi A., Azizi Z., Canopy cover or remotely sensed vegetation index, explanatory variables of above-ground biomass in an arid rangeland, Iran, J. Arid Land, 2018, Vol. 10, pp. 767–780, DOI: 10.1007/s40333-018-0017-y.
  30. Quang Q., Yuan Qz., Han Jc. et al., A remote sensing monitoring method for alpine grasslands desertification in the eastern Qinghai-Tibetan Plateau, J. Mountain Science, 2020, Vol. 17, pp. 1423–1437, DOI: 10.1007/s11629-020-5986-6.
  31. Wang G., Liu Sh., Liu T. et al., Modelling above-ground biomass based on vegetation indexes: a modified approach for biomass estimation in semi-arid, Intern. J. Remote Sensing, 2019, Vol. 40, Issue 10, pp. 3835–3854, DOI: 10.1080/01431161.2018.1553319.
  32. Wang Z., Ma Y., Zhang Y., Shang J., Review of Remote Sensing Applications in Grassland Monitoring, Remote Sensing, 2022, Vol. 14, No. 12, Article 2903, DOI: 10.3390/rs14122903.
  33. Wiedinmyer C., Akagi S. K., Yokelson R. J. et al., The Fire INventory from NCAR (FINN): a high-resolution global model to estimate the emissions from open burning, Geoscientific Model Development, 2011, Vol. 4, pp. 625–641, DOI: 10.5194/gmd-4-625-2011.
  34. Yan J., Zhang G., Ling H., Han F., Comparison of time-integrated NDVI and annual maximum NDVI for assessing grassland dynamics, Ecological Indicators, 2022, Vol. 136, Article 108611, DOI: 10.1016/j.ecolind.2022.108611.
  35. Yuferev V. G., Tkachenko N. A., Sinelnikova K. P., Spectral Characteristics of Desertified Black-Earth Pastures, Arid Ecosystems, 2022, Vol. 12, No. 1, pp. 54–60, DOI: 10.1134/S2079096122010152.
  36. Zeng N., Ren X., He H. et al., Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm, Ecological Indicators, 2019, Vol. 102, pp. 479–487, DOI: 10.1016/j.ecolind.2019.02.023.
  37. Zeng N., Ren X., He H. et al., Estimating the grassland aboveground biomass in the Three-River Headwater Region of China using machine learning and Bayesian model averaging, Environmental Research Letters, 2021, Vol. 16, No. 11, Article 114020, DOI: 10.1088/1748-9326/ac2e85.
  38. Zhang R. P., Zhou J. H., Guo J. et al., Inversion models of aboveground grassland biomass in Xinjiang based on multisource data, Frontiers in Plant Science, 2023, Vol. 14, Article 1152432, DOI: 10.3389/fpls.2023.1152432.
  39. Zolotokrylin A. N., Titkova T. B., A new approach to the monitoring of desertification centers, Arid ecosystems, 2011, Vol. 1, No. 3, pp. 125–140, DOI: 10.1134/S2079096111030127.
  40. Zolotokrylin A. N., Titkova T. B., Ulanova S. S., Fedorova N. L., Ground-based and satellite investigation of production of pastures in Kalmykia that vary in degree of vegetation degradation, Arid Ecosystems, 2013, Vol. 3, No. 4, pp. 212–219, DOI: 10.1134/S2079096113040136.