ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 188-203

Benefits of hyperspectral information for nitrogen management in grain crop production

V.P. Yakushev 1 , V.V. Yakushev 1 , S.Yu. Blokhina 1 , Yu.I. Blokhin 1 , A.F. Petrushin 1 , D.A. Matveenko 1 
1 Agrophysical Research Institute, Saint Petersburg, Россия
Accepted: 29.05.2024
DOI: 10.21046/2070-7401-2024-21-3-188-203
Improvements in the sustainability of grain crop production depend essentially on the efficient use of nitrogen fertilizers. Precision agriculture, as a viable and scalable solution for nitrogen nutrition management of plants by applying the optimal amount to those crop areas in which nitrogen deficiency has developed, is used not only to increase yields, but also to avoid nitrogen losses. Among the agronomic practices for which the concept of precision agriculture was applied for research and operational purposes, variable rate nitrogen fertilization plays a key role. However, this technology is still not widely adopted, since its implementation requires a detailed assessment of within-field variability of yield factors and the relationship of this variability with crop growth conditions. Hyperspectral remote sensing opens up new opportunities for rapid and more precise quantitative assessment of the crop canopy state during the main stages of plant development. An algorithm is presented to control the nitrogen regime on the basis of hyperspectral sensing data with the identification of crop areas in which nitrogen deficiency has developed. Digital images of crop canopy with spring wheat were obtained using a Pika-L hyperspectral camera (Resoson, USA) installed on a Matrice 600 Pro unmanned aerial vehicle (DJI, China), and vegetation indices were calculated from the images. The dynamics of the indices value changes in the main stages of plant development were estimated in comparison with the values obtained under optimal and stressful conditions, and a functional analysis of the parameters describing the spatial structure of changeable optical characteristics was carried out. In order to perform the technological operation of nitrogen fertilizer application, the crop canopy zones under nitrogen stress were determined, the required fertilizer rates were calculated, the spread rate map based on these data was generated for the robotized equipment, indicating the exact place of application. At the same time, the costs of resources and time for ground-based field measurements and laying out test sites have been significantly reduced with the prospect of abandoning their placement on operational fields.
Keywords: precision agriculture, hyperspectral sensing, nitrogen deficiency, variable rate application, nitrogen fertilizers, vegetation indices, variogram analysis
Full text

References:

  1. Anishchenko A. N., Shut’kov A. A., Problems of implementation of the Doctrine of food security in Russia, Prodovol’stvennaya politika i bezopasnost’, 2021, Vol. 8, No. 1, pp. 9–22 (in Russian), DOI: 10.18334/ppib.8.1.111777.
  2. Zavalin A. A., Sokiliv A. O., Utilization by plants of nitrogen fertilizer and its regulation, Intern. Agricultural J., 2019, No. 4(370), pp. 71–75 (in Russian), DOI: 10.24411/2587-6740-2019-14070.
  3. Matveenko D. A., Yakushev V. V., Yakushev V. P., Precision management of the nitrogen status of spring wheat crops based on remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 79–86 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-79-86.
  4. Merzlaya G. E., Ponkratenkova I. V., Gavrilova A. Yu., Agroecological assessment of continuous application of organic and mineral fertilizers in the cultivation of spring wheat in technologies of different intensity, Agrokhimiya, No. 9, pp. 18–25 (in Russian), DOI: 10.1134/S0002188119090060.
  5. Mitrofanova O. A., Mitrofanov E. P., Yakushev V. P. et al., Decision making tools on precision farming technologies feasibility based on geostatistical analysis of remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 71–84 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-71-84.
  6. Petrushin A. F., Yakushev V. P., Yakushev V. V., Blokhina S. Yu., Vatveenko D. A., Blokhin Yu. I., Mitrofanov E. P., Mitrofanova O. A., A program for detecting and highlighting the boundaries of within-field variability based aerospace images and optical criteria, Certificate of state computer program registration No. 2023611147 (RU), Reg. 17.01.2023 (in Russian).
  7. Sharkov I. N., Kolbin S. A., Samokhvalova S. M., Problem of nitrogen when using leached cherozem on intensive technology in forest-steppe of Western Siberia, Agrokhimiya, No. 2, pp. 3–10 (in Russian), DOI: 10.31857/S0002188121020101.
  8. Shpanyov A. M., Smuk V. V., Changes in the spectral characteristics of cultivated and weed plants under the influence of mineral fertilizers in agrocenoses of the North-West of Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 165–177 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-165-177.
  9. Yakushev V. P., Yakushev V. V., Prospects for smart agriculture in Russia, Vestnik Rossiiskoi akademii nauk, 2018, Vol. 88, No. 5, pp. 330–340, DOI: 10.1134/S1019331618040135.
  10. Yakushev V. P., Kanash E. V., Yakushev V. V. et al., Advanced features of automated detection of within-field variability based on hyperspectral images and optical criteria, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 24–32 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-24-32.
  11. Yakushev V. P., Bure V. M., Mitrofanova O. A. et al. (2020a), Within-field variability estimation based on variogram analysis of satellite data for precision agriculture, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 114–122 (in Russian), DOI: 10.21046/2070-7401-2020-17-2-114-122.
  12. Yakushev V. P., Yakushev V. V., Matveenko D. A. (2020b), Intelligent systems for technology decision support in precision agriculture, Zemledelie, 2020, No. 1, pp. 33–37 (in Russian), DOI: 10.24411/0044-3913-2020-10109.
  13. Yakushev V. P., Yakushev V. V., Blokhina S. Yu. et al. (2021a), Information support for modern agricultural systems in Russia, Vestnik Rossiiskoi akademii nauk, 2021, Vol. 91, No. 8, pp. 755–768 (in Russian), DOI: 10.31857/S0869587321080090.
  14. Yakushev V. P., Bure V. M., Mitrofanova O. A. et al. (2021b), The specifics of aerospace image processing to optimize geostatistical approaches to within-field variability estimation in precision agriculture, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 128–139 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-128-139.
  15. Yakushev V. P., Kanash E. V., Rusakov D. V. et al., Correlation dependences between crop reflection indices, grain yield and optical characteristics of wheat leaves at different nitrogen level and seeding density, Sel’skokhozyaistvennaya biologiya, 2022, Vol. 57, No. 1, pp. 98–112 (in Russian), DOI: 10.15389/ agrobiology.2022.1.98rus.
  16. Yakushev V. P., Yakushev V. V., Blokhina S. Yu. et al., The role of remote sensing of the Earth in precision agriculture, Vestnik Rossiiskoi akademii nauk, 2023, Vol. 93, No. 10, pp. 955–969 (in Russian), DOI: 10.31857/S0869587323100110.
  17. Al Makdessi N., Ecarnot M., Roumet P. et al., A spectral correction method for multi-scattering effects in close range hyperspectral imagery of vegetation scenes: application to nitrogen content assessment in wheat, Precision Agriculture, 2019, Vol. 20, No. 2, pp. 237–259, DOI: 10.1007/s11119-018-9613-2.
  18. Argento F., Anken T., Abt F. et al., Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data, Precision Agriculture, 2021, Vol. 22, pp. 364–386, DOI: 10.1007/s11119-020-09733-3.
  19. Baresel J. P., Zimmermann G., Reents H. J., Effects of genotype and environment on N uptake and N partition in organically grown winter wheat (Triticum aestivum L.) in Germany, Euphytica, 2008, Vol. 163, No. 3, pp. 347–354, DOI:10.1007/s10681-008-9718-1.
  20. Basso B., Antle J., Digital agriculture to design sustainable agricultural systems, Nature Sustainability, 2020, Vol. 3(4), pp. 254–256, DOI: 10.1038/s41893-020-0510-0.
  21. Basso B., Dumont B., Cammarano D. et al., Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone, Science of the Total Environment, 2016, Vol. 545–546, pp. 227–235, DOI: 10.1016/j.scitotenv.2015.12.104.
  22. Basso B., Shuai G., Zhang J. et al., Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest, Scientific Reports, 2019, Vol. 9, No. 1, pp. 1–9, DOI: 10.1038/s41598-019-42271-1.
  23. Basyouni R., Dunn B. L., Goad C., Use of nondestructive sensors to assess nitrogen status in potted poinsettia (Euphorbia pulcherrima L. (Willd. ex Klotzsch)) production, Scientia Horticulturae, 2015, Vol. 192, pp. 47–53, DOI: 10.1016/j.scienta.2015.05.011.
  24. Blekanov I., Molin A., Zhang D. et al., Monitoring of grain crops nitrogen status from UAV multispectral images coupled with deep learning approaches, Computers and Electronics in Agriculture, 2023, Vol. 2012, Article 108047, DOI: 10.1016/j.compag.2023.108047.
  25. Buthelezi S., Mutanga O., Sibanda M. et al., Assessing the prospects of remote sensing maize leaf area index using UAV-derived multi-spectral data in smallholder farms across the growing season, Remote Sensing, 2023, Vol. 15, No. 6, Article 1597, DOI: 10.3390/rs15061597.
  26. Calicioglu O., Flammini A., Bracco S. et al., The future challenges of food and agriculture: an integrated analysis of trends and solutions, Sustainability, 2019, Vol. 11, No. 1, Article 222, DOI: 10.3390/su11010222.
  27. Chlingaryan A., Sukkarieh S., Whelan B., Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review, Computers and Electronics in Agriculture, 2018, Vol. 151, pp. 61–69, DOI: 10.1016/j.compag.2018.05.012.
  28. Dehghan-Shoar M. H., Orsi A. A., Pullanagari R. R. et al., A hybrid model to predict nitrogen concentration in heterogeneous grassland using field spectroscopy, Remote Sensing of Environment, 2023, Vol. 285, Article 113385, DOI: 10.1016/j.rse.2022.113385.
  29. Good A. G., Beatty P. H., Fertilizing nature: a tragedy of excess in the commons, PLoS Biology, 2011, Vol. 9, No. 8, Article e1001124, DOI: 10.1371/journal.pbio.1001124.
  30. Guo J., Jia Y., Chen H. et al., Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply, Scientific Reports, 2019, Vol. 9, Article 1248, DOI: 10.1038/s41598-018-37838-3.
  31. Guo J., Zhang J., Xiong S. et al., Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling, Precision Agriculture, 2021, Vol. 22, pp. 1634–1658, DOI: 10.1007/s11119-021-09804-z.
  32. Hirel B., Tetu T., Lea P. J., Dubois F., Improving nitrogen use efficiency in crops for sustainable agriculture, Sustainability, 2011, Vol. 3, No. 9, pp. 1452–1485, DOI: 10.3390/su3091452.
  33. Jamali M., Soufizadeh S., Yeganeh B. et al., Wheat leaf traits monitoring based on machine learning algorithms and high-resolution satellite imagery, Ecological Informatics, 2023, Vol. 74, Article 101967, DOI: 10.1016/j.ecoinf.2022.101967.
  34. Jiang J., Cai W., Zheng H. et al., Using digital cameras on an unmanned aerial vehicle to derive optimum color vegetation indices for leaf nitrogen concentration monitoring in winter wheat, Remote Sensing, 2019, Vol. 11, No. 22, Article 2667, DOI: 10.3390/rs11222667.
  35. Jiang J., Atkinson P. M., Chen C. et al., Combining UAV and Sentinel-2 satellite multi-spectral images to diagnose crop growth and N status in winter wheat at the county scale, Field Crops Research, 2023, Vol. 294, Article 108860, DOI: 10.1016/j.fcr.2023.108860.
  36. Li F., Li D., Elsayed S. et al., Using optimized three-band spectral indices to assess canopy N uptake in corn and wheat, European J. Agronomy, 2021, Vol. 127, Article 126286, DOI: 10.1016/j.eja.2021.126286.
  37. Lu B., Dao P. D., Liu J. et al., Recent advances of hyperspectral imaging technology and applications in agriculture, Remote Sensing, 2020, Vol. 12, No. 16, Article 2659, DOI: 10.3390/rs12162659.
  38. Ma J., Zheng B., He Y., Applications of a hyperspectral imaging system used to estimate wheat grain protein: a review, Frontiers in Plant Science, 2022, Vol. 13, Article 837200, DOI: 10.3389/fpls.2022.837200.
  39. Mălinaş A., Vidican R., Rotar I. et al., Current status and future prospective for nitrogen use efficiency in wheat (Triticum aestivum L.), Plants, 2022, Vol. 1, No. 2, Article 217, DOI: 10.3390/ plant s1102 0217.
  40. Mishra D., Muduli K., Sevcik L. et al., Combating of associated issues for sustainable agri-food sectors, Sustainability, 2023, Vol. 15, No. 3, Article 10096, DOI: 0.3390/su151310096.
  41. Mittermayer M., Donauer J., Kimmelmann S. et al., Effects of different nitrogen fertilization systems on crop yield and nitrogen use efficiency — results of a field experiment in southern Germany, Heliyon, 2024, Vol. 10, No. 7, Article e28065, DOI: 10.1016/j.heliyon.2024.e28065.
  42. Nutini F., Confalonieri R., Crema A. et al., An operational workflow to assess rice nutritional status based on satellite imagery and smartphone apps, Computers and Electronics in Agriculture, 2018, Vol. 154, pp. 80–92, DOI: 10.1016/j.compag.2018.08.008.
  43. Pancorbo J. L., Alonso-Ayuso M., Camino C. et al., Airborne hyperspectral and Sentinel imagery to quantify winter wheat traits through ensemble modeling approaches. Precision Agriculture, 2023, Vol. 24, pp. 1288–1311, DOI: 10.1007/s11119-023-09990-y.
  44. Pannell D. J., Gandorfer M., Weersink A., How flat is flat? Measuring payoff functions and the implications for site-specific crop management, Computers and Electronics in Agriculture, 2019, Vol. 162, pp. 459–465, DOI: 10.1016/j.compag.2019.04.011.
  45. Raya-Sereno M. D., Alonso-Ayuso M., Pancorbo J. L. et al., Residual effect and N fertilizer rate detection by high-resolution VNIR-SWIR hyperspectral imagery and solar-induced chlorophyll fluorescence in wheat, IEEE Trans. Geoscience and Remote Sensing, 2021, Vol. 60, pp. 1–17, DOI: 10.1109/TGRS.2021.3099624.
  46. Sahoo R. N., Gakhar S., Rejith R. G. et al., Optimizing the retrieval of wheat crop traits from UAV-borne hyperspectral image with radiative transfer modelling using Gaussian process regression, Remote Sensing, 2023, Vol. 15, No. 23, Article 5496, DOI: 10.3390/rs15235496.
  47. Sahoo R. N., Rejith R. G., Gakhar S. et al., Drone remote sensing of wheat N using hyperspectral sensor and machine learning, Precision Agriculture, 2024, Vol. 25, No. 2, pp. 704–728, DOI: 10.1007/s11119-023-10089-7.
  48. Spati K., Huber R., Finger R., Benefits of increasing information accuracy in variable rate technologies, Ecological Economics, 2021, Vol. 185, Article 107047, DOI: 10.1016/j.ecole con.2021.107047.
  49. Stamatiadis S., Schepers J. S., Evangelou E. et al., Variable-rate nitrogen fertilization of winter wheat under high spatial resolution, Precision Agriculture, 2018, Vol. 19, No. 3, pp. 570–587, DOI: 10.1007/s11119-017-9540-7.
  50. van Grinsven H. J., Bouwman L., Cassman K. G. et al., Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050, J. Environmental Quality, 2015, Vol. 44, No. 2, pp. 356–367, DOI: 10.2134/jeq2014.03.0102.
  51. Walter A., Finger R., Huber R., Buchmann N., Opinion: smart farming is key to developing sustainable agriculture, Proc. National Academy of Sciences, 2017, Vol. 114, No. 24, pp. 6148–6150, DOI: 10.1073/pnas.1707462114.
  52. Wang X., Miao Y., Dong R. et al., Economic optimal nitrogen rate variability of maize in response to soil and weather conditions: implications for site-specific nitrogen management, Agronomy, 2020, Vol. 10, No. 9, Article 1237, DOI:10.3390/agronomy10091237.
  53. Xu S., Xu X., Blacker C. et al., Estimation of leaf nitrogen content in rice using vegetation indices and feature variable optimization with information fusion of multiple-sensor images from UAV, Remote Sensing, 2023, Vol. 15, No. 3, Article 854, DOI: 10.3390/rs15030854.
  54. Yakushev V. P., Kanash E. V., Evaluation of wheat nitrogen status by colorimetric characteristics of crop canopy presented in digital images, J. Agricultural Informatics, 2016, Vol. 7, No. 1, pp. 65–74, DOI: 10.17700/jai.2016.7.1.268.
  55. Yang B., Wang M., Sha Z. et al., Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles, Sensors (Switzerland), 2019, Vol. 19, No. 20, Article 4416, DOI: 10.3390/s19204416.