ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 207-220

Investigation of the anisotropy of Doppler velocity azimuthal dependence of X-band radio wave scatterers

A.V. Ermoshkin 1 , N.A. Bogatov 1 , I.A. Kapustin 1 , A.A. Molkov 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 12.04.2024
DOI: 10.21046/2070-7401-2024-21-3-207-220
One of the challenges of coherent radar sensing of the sea surface is explored, the potential of which for addressing oceanological problems is undeniable. To date, a connection has been established between the Doppler velocity of radio wave scatterers and the speed of the tailwind, near-surface currents, and wave characteristics. Experimental evidence demonstrates asymmetry of the azimuthal dependence of the Doppler velocity, which requires explanation. This article examines this issue based on experimental data across a wide range of hydro-meteorological conditions. Sensing was conducted in the X-band using horizontal polarization of radiation and receiving at sensing angles near sliding, utilizing a digital coherent circular radar station. Due to the high spatial and temporal resolution of radar equipment, it has been shown that when measuring the Doppler velocity, the average values are close to the average velocities of the radio wave scatterers on an agitated sea surface. A simple statistical model has been proposed for the average Doppler velocity value in the considered section of sea surface, depending on the azimuth angle of measurement, taking into account asymmetry. The features of the asymmetry in the azimuthal dependence of Doppler velocity for X-band radio waves and some mechanisms for its formation have been considered.
Keywords: coherent radar sensing, Bragg waves, Doppler velocity, currents, wind waves
Full text

References:

  1. Bogatov N. A., Kapustin I. A., Molkov A. A., Ermoshkin A. V., Retrieval of wind ripple speed from stereo imagery of sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 216–225 (in Russian), DOI: 10.21046/2070-7401-2023-20-2-216-225.
  2. Ermakov S. A., Vliyanie plenok na dinamiku gravitatsionno-kapillyarnykh voln (Influence of films on the dynamics of gravity-capillary waves), N. Novgorod: IAP RAS, 2010, 163 p. (in Russian).
  3. Ermoshkin A. V., Kapustin I. A., Molkov A. A., Bogatov N. A., Determination of the sea surface current by a Doppler X-band radar, Fundamental and Applied Hydrophysics, 2020, Vol. 13, No. 3, pp. 93–103 (in Russian), DOI: 10.7868/S2073667320030089.
  4. Kanevsky M. B., Karaev V. Y., Lubyako L. V., Zuikova E. M., Gol’dblat V. Y., Titov V. I., Balandina G. N., Doppler spectra of centimeter and millimeter microwaves backscattered from a rough water surface at low grazing angles, Radiophysics and Quantum Electronics, 2001, Vol. 44, No. 11, pp. 850–857, DOI: 10.1023/A:1014207729526.
  5. Kapustin I. A., Ermoshkin A. V., Bogatov N. A., Molkov A. A., On the estimation of the contribution of near-surface wind to the kinematics of slicks on the sea surface under conditions of finite wave fetch, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 163–172 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-163-172.
  6. Salin M. B., Ermoshkin A. V., Razumov D. D., Salin B. M. Models of the Formation of Doppler spectrum of surface reverberation for sound waves of the meter range, Akusticheskii zhurnal, 2023, Vol. 69, No. 5, pp. 595–607 (in Russian), DOI: 10.31857/S032079192360035X.
  7. Sergievskaya I. A., Ermakov S. A., Plotnikov L. M. et al., Determination of current velocities during microwave sounding of the sea surface at moderate angles of incidence, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 212–222 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-212-222.
  8. Radar handbook, M. Skolnik (ed.), New York, 1970.
  9. Carrasco R., Horstmann J., Seemann J., Significant wave height measured by coherent X-band radar, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, No. 9, pp. 5355–5365, DOI: 10.1109/TGRS.2017.2706067.
  10. Chapron B., Collard F., Ardhuin F., Direct measurements of ocean surface velocity from space: Interpretation and validation, J. Geophysical Research, 2005, Vol. 110, Article C07008, DOI: 10.1029/2004jc002809.
  11. Cui J., Wang Y., Zhang Y. et al., A new model for Doppler shift of C-band echoes backscattered from sea surface, Acta Oceanologica Sinica, 2023, Vol. 42, No. 6, pp. 100–111, DOI: 10.1007/s13131-022-2144-8.
  12. Duncan J. H., Spilling breakers, Annual Review Fluid Mechanics, 2001, Vol. 33, pp. 519–547, DOI: 10.1146/annurev.fluid.33.1.519.
  13. Duncan J. H., Qiao H., Philomin V., Wenz A., Gentle spilling breakers: crest profile evolution, J. Fluid Mechanics, 1999, Vol. 379, pp. 191–222, DOI: 10.1017/S0022112098003152.
  14. Elyouncha A., Eriksson L. E. B., Romeiser R., Ulander L. M. H., Empirical relationship between the Doppler centroid derived from X-band spaceborne InSAR data and wind vectors, IEEE Trans. Geoscience and Remote Sensing, 2022, Vol. 60, pp. 1–20, DOI: 10.1109/TGRS.2021.3066106.
  15. Ermakov S. A., Kapustin I. A., Sergievskaya I. A., On peculiarities of scattering of microwave radar signals by breaking gravity-capillary waves, Radiophysics. Quantum Electronics, 2012, Vol. 55, pp. 453–461, DOI: 10.1007/s11141-012-9381-1.
  16. Ermoshkin A., Kapustin I., Estimation of the wind-driven wave spectrum using a high spatial resolution coherent radar, Russian J. Earth Sciences, 2019, Vol. 19, Article ES1005, DOI: 10.2205/2019ES000662.
  17. Ermoshkin A. V., Kapustin I. A., Kosteev D. A. et al., Monitoring sea currents with midrange acoustic backscattering, Water, 2023, Vol. 15, No. 11, Article 2016, DOI: 10.3390/w15112016.
  18. Johannessen J. A., Chapron B., Collard F. et al., Direct ocean surface velocity measurements from space: Improved quantitative interpretation of ENVISAT ASAR observations, Geophysical Research Letters, 2008, Vol. 35, No. 22, DOI: 10.1029/2008GL035709.
  19. Hansen M. W., Kudryavtsev V., Chapron B. et al., Simulation of radar backscatter and Doppler shifts of wave–current interaction in the presence of strong tidal current, Remote Sensing of Environment, 2012, Vol. 120, pp. 113–122, DOI: 10.1016/j.rse.2011.10.033.
  20. Karaev V., Titchenko Y., Panfilova M., Meshkov E., The Doppler spectrum of the microwave radar signal backscattered from the sea surface in terms of the modified Bragg scattering model, IEEE Trans. Geoscience and Remote Sensing, 2020, Vol. 58, No. 1, pp. 193–202, DOI: 10.1109/TGRS.2019.2935343.
  21. Kudryavtsev V., Hauser D., Gaudal G., Charpon B., A semiempirical model of the normalized radar cross-section of the sea surface. 1. Background model, J. Geophysical Research, 2003, Vol. 108, Issue C3, Article 8054, pp. FET 2-1–FET 2-24, DOI: 10.1029/2001JC001003.
  22. Longuet-Higgins M. S., Parasitic capillary waves: a direct calculation, J. Fluid Mechanics, 1995, Vol. 301, pp. 79–107, https://doi.org/10.1017/S0022112095003818.
  23. Longuet-Higgins M., Cleaver R., Crest instability of gravity waves. Part 1. The almost highest wave, J. Fluid Mechanics, 1994, Vol. 258, pp. 115–129, https://doi.org/10.1017/S0022112094003265.
  24. Martin A. C. H., Gommenginger C., Marquez J. et al., Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign, J. Geophysical Research, 2016, Vol. 121, Issue 3, pp. 1640–1653, DOI: 10.1002/2015JC011459.
  25. Moiseev A., Johnsen H., Hansen M. W., Johannessen J. A., Evaluation of radial ocean surface currents derived from Sentinel-1 IW Doppler shift using coastal radar and Lagrangian surface drifter observations, J. Geophysical Research, 2020, Vol. 125, Article e2019JC015743, DOI: 10.1029/2019jc015743.
  26. Mouche A. A., Collard F., Chapron B. et al., On the use of Doppler shift for sea surface wind retrieval from SAR, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, pp. 2901–2909, DOI: 10.1109/TGRS.2011.2174998.
  27. Pierson W. J., The theory and applications of ocean wave measuring systems at and below the sea surface, on the land, from aircraft, and from spacecraft, NASA Contractor Rep. CR-2646, N76-17775, 1976, 401 p.
  28. Qiao H., Duncan J., Gentle spilling breakers: Crest flow-field evolution, J. Fluid Mechanics, 2001, Vol. 439, pp. 57–85, DOI: 10.1017/S0022112001004207.
  29. Romeiser R., Thompson D. R., Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents, IEEE Trans. Geoscience and Remote Sensing, 2000, Vol. 38, No. 1, pp. 446–458, DOI: 10.1109/36.823940.
  30. Romeiser R., Suchandt S., Runge H. et al., First Analysis of TerraSAR-X Along-Track InSAR-Derived Current Fields, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, No. 2, pp. 820–829, DOI: 10.1109/TGRS.2009.2030885.
  31. Sergievskaya I. A., Ermakov S. A., Ermoshkin A. V. et al., The role of micro breaking of small-scale wind waves in radar backscattering from sea surface, Remote Sensing, 2020, Vol. 12, No. 24, Article 4159, DOI: 10.3390/rs12244159.
  32. Yurovsky Y. Yu., Kudryavtsev V. N., Grodsky S. A., Chapron B., Sea surface Ka-band Doppler measurements: analysis and model development, Remote Sensing, 2019, Vol. 11, No. 7, Article 839, DOI: 10.3390/rs11070839SKIM.
  33. Valenzuela G., Theories for the interaction of electromagnetic and oceanic waves — a review, Boundary Layer Meteorology, 1978, Vol. 13, pp. 61–85, http://dx.doi.org/10.1007/BF00913863.
  34. Wu J., Wind-induced drift currents, J. Fluid Mechanics, 1975, Vol. 68, No. 1, pp. 49–70, https://doi.org/10.1017/S0022112075000687.