ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 269-291

Meridional variability of climatic system parameters in the Atlantic Ocean

V.N. Malinin 1 , P.A. Vainovskу 2 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 OOO Prognoz, Saint Petersburg, Russia
Accepted: 17.04.2024
DOI: 10.21046/2070-7401-2024-21-3-269-291
The article examines interannual variability and features of the relationship between various parameters of the climate system of the Atlantic Ocean (AO) from 40° S up to 60° N. For this purpose, calculations were made of the components of heat and moisture exchange and radiation indices Ga and Gs, characterizing the greenhouse effect, between the ocean and the atmosphere over a 40-year period (1979–2018) for 10° latitude zones of the AO according to the NCEP/DOE (National Centers for Environmental Prediction/Department of Energy) reanalysis archive AMIP-II (Atmospheric Model Intercomparison Project). It is shown that, under conditions of general warming of the waters of the AO, in most of its latitudinal zones, positive estimates of parameter trends are noted, excluding the influx of short-wave radiation, which means their increase over time. Record growth rates are observed in the amount of precipitation, which in most latitudinal zones is almost an order of magnitude higher than the trends in sea surface temperature (SST) and radiation indices. Evaporation is also growing rapidly, with trends that are 2–6 times higher than trends in SST and radiation indices. A significantly higher interannual variability of moisture exchange components was revealed. For most latitudinal zones, estimates of the coefficient of variation of the moisture exchange components are approximately an order of magnitude higher than their values for the components of the radiation balance and SST, with higher coefficients of variation corresponding mainly to zones with higher trend values. It is shown that interannual variability of heat and moisture exchange characteristics depends mainly on internal processes in the climate system of the AO. It has been established that moisture content of the atmosphere is an important climate-forming factor, which, through the greenhouse effect, on the one hand, affects air temperature and SST, and on the other, precipitation. At the same time, the formation of precipitation, especially in the ITCZ (Intertropical Convergence Zone), is accompanied by the release of a huge amount of heat, which is spent on maintaining of the general circulation and warming of the atmosphere.
Keywords: Atlantic Ocean, meridional variability of climate characteristics, greenhouse effect, trends
Full text

References:

  1. Alekseev G. V., Arctic climate warming: discrepancies between global climate models and observations and possible causes, Hydrometeorology and Ecology, 2023, No. 71, pp. 207–230 (in Russian), DOI: 1033933/2713-3001-2023-71-207-230.
  2. Bekryaev R. V., Changes in the downward and net longwave surface radiation fluxes in high latitudes, Fundamentalnaya i prikladnaya climatologiya, 2015, No. 1, pp. 27–48 (in Russian).
  3. Zakharov V. F., Malinin V. N., Morskiye l’dy i klimat (Sea ice and climate), Saint Petersburg: Gidrometeoizdat, 2000, 92 p. (in Russian).
  4. Ivanov V. V., Present changes in hydrometeorological conditions in the Arctic Ocean associated with reduction of the sea ice cover, Gidrometeorologiya i ekologiya, 2021, No. 64, pp. 407–434 (in Russian), DOI: 10.33933/2713-3001-2021-64-407-434.
  5. Krasheninnikova S. B., Vodnye massy i perenosy tepla v Severnoi Atlantike (Water masses and heat transfers in the North Atlantic), Simferopol: IT “ARIAL”, 2019, 124 p. (in Russian).
  6. Lappo S. S., On the issue of the causes of heat advection to the north across the equator in the Atlantic Ocean, In: Study of the processes of interaction between the ocean and the atmosphere, Lappo S. S. (ed.), Moscow, 1984, pp. 125–129 (in Russian).
  7. Lappo S. S., Gulev S. K., Rozhdestvenskiy A. E., Krupnomasshtabnoe teplovoe vzaimodeistvie v sisteme okean – atmosfera i energoaktivnye oblasti Mirovogo okeana (Large-scale thermal interaction in the ocean-atmosphere system and energy-active regions of the World Ocean), Leningrad: Gidrometeoizdat, 1990, 335 p. (in Russian).
  8. Loginov V. F., Lysenko S. A., Sovremennye izmeneniya global’nogo i regional’nogo klimata (Modern changes in global and regional climate), Minsk: Belaruskaya Navuka, 2019, 318 p. (in Russian).
  9. Malinin V. N., Obshchaya okeanologiya. Ch. 1. Fizicheskie protsessy (General oceanology. Pt. 1. Physical processes), Saint Petersburg: Publ. House RGGMU, 1998, 342 p. (in Russian).
  10. Malinin V. N., Uroven’ okeana: nastoyashchee i budushchee (The ocean level: present and future), Saint Petersburg: Publ. House RGGMU, 2012, 260 p. (in Russian).
  11. Malinin V. N., Vainovsky P. A. (2021a), Moisture exchange between the ocean and the atmosphere in the intertropical convergence zone, Gidrometeorologiya i ekologiya, No. 63, pp. 255–278 (in Russian), DOI: 10.33933/2713-3001-2021-63-255-278.
  12. Malinin V. N., Vainovsky P. A. (2021b), Trends in moisture exchange components in the ocean – atmosphere system under conditions of global warming according to the Reanalysis-2 archive, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, Vol. 18, No. 3. pp. 9–25 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-9-25.
  13. Malinin V. N., Vainovsky P. A., On the interannual variability of the most intense sources and sinks of CO2 in the ocean based on observational data, Gidrometeorologiya i ekologiya, 2022, No. 66, pp. 51–70 (in Russian), DOI: 10.33933/2713-3001-2022-66-51-70.
  14. Malinin V. N., Gordeeva S. M., Variability of atmospheric water vapor over the ocean according to satellite data, Issledovanie Zemli iz kosmosa, 2015, No. 1, pp. 3–11 (in Russian), DOI: 10.7868/S0205961415010042.
  15. Malinin V. N., Gordeeva S. M., Effect of moisture exchange in the Northern Atlantic on European Russia moistening and annual Volga runoff, Water Resources, 2019, Vol. 46, No. 3, pp. 466–479, DOI: 10.1134/S009780781903014X.
  16. Malinin V. N., Shmakova V. Yu., Variability of the energy active zones in North Atlantic, Fundamentalnaya i prikladnaya climatologiya, 2018, No. 4. pp. 55–70 (in Russian), DOI: 10.21513/2410-8758-2018-4-55-70.
  17. Malinin V. N., Gordeeva S. M., Naumov L. M., Total precipitable water of the atmosphere as a climate forcing factor, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 243–251 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-243-251.
  18. Malinin V. N., Vainovsky P. A., Gordeeva S. M., On the relationship between the interannual variability of parameters of heat and moisture exchange of the ocean – atmosphere system in the intertropical convergence zone, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 281–296 (in Russian), DOI: 10.21046/2070-7401-2023-20-4-281-296.
  19. Matveev L. T., Kurs obshchei meteorologii. Fizika atmosfery (General meteorology course. Atmospheric physics), Leningrad: Gidrometeoizdat, 1984, 751 p. (in Russian).
  20. Matveev Yu. L., Matveev L. T., Soldatenko S. A., Global’noye pole oblachnosti (Global cloud field), L. T. Matveev (ed.), Leningrad: Gidrometeoizdat, 1986, 278 p. (in Russian).
  21. Morozov E. G., Frey D. I., Tarakanov R. Yu., Antarctic bottom water flow through the eastern part of the Philip passage in the Weddell Sea, Okeanologiya, 2020, Vol. 60, No. 5, pp. 680–684 (in Russian), DOI: 10.31857/S0030157420050160.
  22. Semenov V. A., Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic Region, Doklady Earth Sciences, 2008, Vol. 418, No. 1, pp. 91–94, DOI: 10.1134/s1028334x08010200.
  23. Semenov V. A., Mokhov I. I., Polonsky A. B., Modeling the influence of natural long-term variability in the North Atlantic on the formation of climate anomalies in the Northern Hemisphere, Morskoi gidrofizicheskii zhurnal, 2014, No. 4, pp. 14–27 (in Russian).
  24. Fedorov A. M., Bashmachnikov I. L., Belonenko T. V., Localization of areas of deep convection in the Nordic seas, the Labrador Sea and the Irminger Sea, Vestnik SPbGU. Nauki o Zemle, 2018, Vol. 63, No. 3, pp. 354–362 (in Russian), DOI: 10.21638/spbu07.2018.306.
  25. Adler R. F., Gu G., Wang J.-J. et al., Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006), J. Geophysical Research, 2008, Vol. 113, Article D22104, DOI: 10.1029/2008JD010536.
  26. Alekseev G., Kuzmina S., Bobylev L. et al., Impact of atmospheric heat and moisture transport on the Arctic warming, Intern. J. Climatology, 2019, Vol. 39, No. 8, pp. 3582–3592, https://doi.org/10.1002/joc.6040.
  27. Alekseev G. V., Smirnov A. V., Pnyushkov A. V. et al., Changes of fresh water content in the upper layer of the Arctic Basin in the 1950s–2010s, Fundamental and Applied Hydrophysics, 2021, Vol. 14, No. 4, pp. 25–38, DOI: 10.7868/S2073667321040031.
  28. AR4 Climate Change 2007: The Physical Science Basis. IPCC Report. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al. (eds.), Cambridge; New York: Cambridge Univ. Press, 2007, 996 p.
  29. AR5 Climate Change 2013: The Physical Science Basis. IPCC Report. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G. K. Plattner et al. (eds.), Cambridge; New York: Cambridge Univ. Press, 2013, 1535 p.
  30. AR6 Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani et al. (eds.), Cambridge; New York: Cambridge Univ. Press, 2021. 2204 p.
  31. Bailey D. A., Rhines P. B., Hakkinen S., Formation and pathways of North Atlantic Deep Water in a coupled ice–ocean model of the Arctic–North Atlantic Oceans, Climate Dynamics, 2005, Vol. 25, pp. 497–516, DOI: 10.1007/s00382-005-0050-3/.
  32. Basconcillo J., Moon Il-Ju., Wang B., Mistry M., Possible influence of the warm pool ITCZ on compound climate extremes during the boreal summer, Environmental Research Letters, 2022, Vol. 16, Article 114039, https://doi.org/10.1088/1748-9326/ac30f8.
  33. Boer G. J., Climate change and the regulation of the surface moisture and energy budgets, Climate Dynamics, 1993, Vol. 8, No. 5, pp. 225–239, DOI: 10.1007/BF00198617.
  34. Broecker W. S., The great ocean conveyor, Oceanography, 1991, Vol. 4, No. 2, pp. 79–89, https://doi.org/10.5670/oceanog.191.07.
  35. Brutsaert W., Global land surface evaporation trend during the past half century: Corroboration by Clausius–Clapeyron scaling, Advances in Water Resources, 2017, Vol. 106, pp. 3–5, https://doi.org/10.1016/j.advwatres.2016.08.014.
  36. Dewitte S., Clerbaux N., Decadal Changes of Earth’s Outgoing Longwave Radiation, Remote Sensor, 2018, Vol. 10, No. 10, Article 1539, https://doi.org/10.3390/rs10101539.
  37. Dong B., Sutton R. T., Wilcox L. J., Decadal trends in surface solar radiation and cloud cover over the North Atlantic sector during the last four decades: drivers and physical processes, Climate Dynamics, 2023, Vol. 60, pp. 2533–2546, https://doi.org/10.1007/s00382-022-06438-3.
  38. Dübal H.-R., Vahrenholt F., Radiative Energy Flux Variation from 2001–2020, Atmosphere, 2021, Vol. 12, Article 1297, https://doi.org/10.3390/atmos12101297.
  39. Foster M. J., Heidinger A., PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology, J. Climate, 2013, Vol. 26, pp. 414–425, https://doi.org/10.1175/JCLI-D-11-00666.1.
  40. Friedlingstein P., Jones M. W., O’Sullivan M. et al., Global carbon budget. 2021. Earth system science, Earth System Science Data, 2022, Vol. 14, pp. 1917–2005, https://doi.org/10.5194/essd-14-1917-2022.
  41. Gulev S. K., Long-term variability of sea-air heat transfer in the North Atlantic Ocean, Intern. J. Climatology, 1995, Vol. 5, pp. 825–852, https://doi.org/10.1002/joc.3370150802.
  42. Haine T. W. N., Curry B., Gerdes R. et al., Arctic freshwater export: Status, mechanisms, and prospects, Global and Planetary Change, 2015, Vol. 125, pp. 13–35, https://doi.org/10.1016/j.gloplacha.2014.11.013.
  43. Hande L. B., Siems S. T., Manton M. J., Observed Trends in Wind Speed over the Southern Ocean, Geophysical Research Letters, 2012, Vol. 39, Article L11802, DOI: 10.1029/2012GL051734.
  44. Hastenrath S., On meridional heat transport in the world ocean, J. Physical Oceanography, 1982, Vol. 12, No. 8, pp. 922–927, https://doi.org/10.1175/1520-0485(1982)012<0922:OMHTIT>2.0.CO;2.
  45. Held I. M., Soden R. J., Robust responses of the hydrological cycle to global warming, J. Climate, 2006, Vol. 19, pp. 5686–5699, https://doi.org/10.1175/JCLI3990.1.
  46. Kalnay E., Kanamitsu M., Kistler R. et al., The NCEP/NCAR 40-year Reanalysis project, Bull. American Meteorological Society, 1996, Vol. 77, pp. 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  47. Kanamitsu M., Description of the NMC global data Assimilation and forecast system, Weather and Forecasting, 1989, Vol. 4, No. 3, pp. 335–342, DOI: 10.1175/15200434(1989)004<0335:DOTNGD>2.0.CO;2.
  48. Kanamitsu M., Ebisuzaki W., Woollen J. et al., NCEP – DOE AMIP-II Reanalysis (R-2), Bull. American Meteorological Society, 2002, Vol. 83, No. 11, pp. 1631–1644, DOI: 10.1175/BAMS-83-11-1631.
  49. Kistler R., Kalnay E., Collins W. et al., The NCEP-NCAR 50-Year Reanalysis: Monthly means CD ROM and documentation, Bull. American Meteorological Society, 2001, Vol. 82, pp. 247–267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.
  50. Long S., Xie S., Zheng X., Liu Q., Fast and slow responses to global warming: Sea surface temperature and precipitation patterns, J. Climate, 2014, Vol. 27, pp. 285–299, https://doi.org/10.1175/JCLI‐D‐13‐00297.1.
  51. Malinin V., Gordeeva S., Naumov L. et al., To the evaluation of trends in the components of ocean–atmosphere moisture exchange, Fundamental and Applied Hydrophysics, 2018, Vol. 11, No. 4, pp. 28–33, DOI: 10.7868/S2073667318040044.
  52. Mayer J., Haimberger L., Mayer M., A quantitative assessment of air–sea heat flux trends from ERA5 since 1950 in the North Atlantic basin, Earth System Dynamics, 2023, Vol. 14, pp. 1085–1105, https://doi.org/10.5194/esd-14-1085-2023.
  53. Manabe S., Role of greenhouse gas in climate change, TellusA: Dynamic Meteorology and Oceanography, 2019, Vol. 71, No. 1, Article 1620078, DOI: 10.1080/16000870.2019.1620078.
  54. Naveira Garabato A. C., McDonagh E. L., Stevens D. P. et al., On the export of Antarctic bottom water from the Weddell Sea, Deep-Sea Research II, 2002, Vol. 49, pp. 4715–4742, https://doi.org/10.1016/S0967-0645(02)00156-X.
  55. O’Gorman P. A., Muller C. J., How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations?, Environmental Research Letters, 2010, Vol. 5, No. 2, Article 025207, DOI: 10.1088/1748-9326/5/2/025207.
  56. Orsi A. H., Johnsson G. C., Bullister J. L., Circulation, mixing, and production of Antarctic Bottom Water, Progress in Oceanography, 1999, Vol. 43, pp. 55–109, https://doi.org/10.1016/S0079-6611(99)00004-X.
  57. Palter J. B., The role of the Gulf Stream in European climate, Annual Review of Marine Science, 2015, Vol. 7, pp. 113–137, DOI: 10.1146/annurev-marine-010814-015656.
  58. Raval A., Ramanathan V., Observational determination of the greenhouse effect, Nature, 1989, Vol. 342, Article 6251, pp. 758–761, DOI: 10.1038/342758a0.
  59. Rhein M., Kieke D., Steinfeldt R., Advection of North Atlantic deep water from the Labrador Sea to the Southern Hemisphere, J. Geophysical Research, 2015, Vol. 120, No. 4, pp. 2471–2487, https://doi.org/10.1002/2014JC010605.
  60. Schmidt G. A., Ruedy R. A., Miller R. L., Lacis A. A., Attribution of the present-day total greenhouse effect, J. Geophysical Research, 2010, Vol. 115, Issue D20, pp. 2156–2202, https://doi.org/10.1029/2010JD014287.
  61. Serreze M. C., Barrett A. P., Slater A. G. et al., The large-scale freshwater cycle of the Arctic, J. Geophysical Research: Ocean, 2006, Vol. 111, Issue C11, Article C11010, 19 p., https://doi.org/10.1029/2005JC003424.
  62. Spreen G., Steur L., De Divine D., Gerland S. et al., Arctic Sea ice volume export through Fram Strait from 1992 to 2014, J. Geophysical Research: Oceans, 2020, Vol. 125, No. 6, Article e2019JC016039, https://doi.org/10.1029/2019JC016039.
  63. Song J., Wang Y., Tang J., A Hiatus of the Greenhouse Effect, Scientific Reports, 2016, Vol. 6, No. 1, Article 33315, DOI: 10.1038/srep33315.
  64. Thomas B. R., Kent E. C., Swail V. R., Berry D. I., Trends in ship wind speeds adjusted for observation method and height, Intern. J. Climatology, 2008, Vol. 28, pp. 747–763, https://doi.org/10.1002/joc.1570.
  65. Trenberth K. E., Caron J. M., Estimates of meridional atmosphere and ocean heat transports. J. Climatology, 2001, Vol. 14, No. 16, pp. 3433–3443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.
  66. Trenberth K. E., Fasullo J., Smith L., Trends and variability in column integrated atmospheric water-vapor, Climate Dynamics, 2005, Vol. 24, pp. 741–758, DOI: 10.1007/s00382-005-0017-4.
  67. Trenberth K. E., Fasullo J. T., Kiehl J., Earth’s global energy budget, Bull. American Meteorological Society, 2009, Vol. 90, No. 3, pp. 311–324, DOI: 10.1175/2008bams2634.1.
  68. Webb M. J., Slingol A., Stephens G. L., Seasonal variations of the clear-sky greenhouse effect: the role of changes in atmospheric temperatures and humidities, Climate Dynamics, 1993, Vol. 9, No. 3, pp. 117–129, DOI: 10.1007/BF00209749.
  69. Wild M., Folini D., Hakuba M. Z. et al., The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 2015, Vol. 44, pp. 3393–3429, DOI: 10.1007/s00382-014-2430-z.
  70. Xie S.‐P., Ocean warming pattern effect on global and regional climate change, AGU Advances, 2020, Vol. 1, No. 1, Article e2019AV000130, https://doi.org/10.1029/2019AV000130.
  71. Xie S.‐P., Deser C., Vecchi G. A. et al., Global warming pattern formation: Sea surface temperature and rainfall, J. Climate, 2010, Vol. 23, pp. 966–986, https://doi.org/10.1175/2009JCLI3329.1.
  72. Young I. R., Ribal A., Multiplatform evaluation of global trends in wind speed and wave height, Science, 2019, Vol. 364, No. 6440, pp. 548–552, DOI: 10.1126/science.aav9527.
  73. Zheng C. W., Li C. Y., Li X., Recent decadal trend in the North Atlantic wind energy resources, Advances in Meteorology, 2017, Vol. 2017, Article 7257492, 8 p., https://doi.org/10.1155/2017/7257492.
  74. Zhou C., Zelinka M. D., Klein S. A., Impact of decadal cloud variations on the Earth’s energy budget, Nature Geoscience, 2016, Vol. 9, No. 16, pp. 871–874, https://doi.org/10.1038/ngeo2828.