ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 2, pp. 131-140

Identification of thermal springs using space research

A.A. Gurulev 1 , L.V. Zamana 1 , A.P. Kuklin 1 , V.A. Kazantsev 1 
1 Institute of Natural Resources, Ecology and Cryology SB RAS, Chita, Russia
Accepted: 10.04.2024
DOI: 10.21046/2070-7401-2024-21-2-131-140
Currently, the method of space detection of places with elevated surface temperatures on planet Earth in the thermal infrared range has become widespread for practical purposes. With its help, places of man-made and natural fires are identified, thermal pollution of water bodies is assessed. Thermal anomalies of natural origin are formed, among other things, by thermal springs, but not all thermal springs have a coordinate reference, and for some only their names are known. The objects of the study are the thermal anomalies of the Baunt basin within the Baikal rift zone. The purpose of this work is to determine the outlet locations of thermal mineral springs based on the object’s own thermal radiation in the thermal infrared range in the wavelength range of 10.60–11.19 µm. The research objectives of this work included the identification of the optimal time of year and interfering factors for determining the outlet locations of thermal springs by their own thermal radiation in the thermal infrared range; testing this method for known objects under study. As a result, a spatiotemporal assessment of the areas of thermal anomalies recorded from the Landsat-8 satellite was carried out. About 15 thermal anomalies have been identified. An algorithm for estimating temperature anomalies and identifying the most promising places for detecting hydrotherms has been developed based on known thermal springs. The 7 best transportation-accessible sites of thermal anomalies have been identified. The data obtained make it possible to monitor thermal springs using remote sensing methods for these objects and their impact on the environment.
Keywords: thermal sources, thermal infrared range, space images, Landsat-8, remote sensing
Full text

References:

  1. Albagachieva V. A., Usloviya formirovaniya istochnikov tipa akratoterm v Severnom Zabaykal’e (Conditions for the formation of akratotherm-type springs in Northern Transbaikalia), Moscow: Nedra, 1965, 80 p. (in Russian).
  2. Belyaev A. I., Korovin G. N., Loupian E. A., Use of satellite data in the system of remote monitoring of forest fires of the Ministry of Natural Resources of the Russian Federation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Vol. 2, No. 1, pp. 20–29 (in Russian).
  3. Gornyy V. I., Seleznev G. A., Tronin A. A., Application of infrared-thermal satellite flown survey on the low temperature thermal water exploration, Razvedka i okhrana nedr, 2016, No. 1, pp. 49–56 (in Russian).
  4. Gornyy V. I., Kritsuk S. G., Latypov I. Sh. et al., Satellite risk mapping of urban air overheating (by the example of Helsinki, Finland), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 23–34 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-23-34.
  5. Zamana L. V., Deuterium and oxygen-18 of nitrogen therms water of Baunt group (Baikal Rift Zone), Vestnik Buryatskogo gosudarstvennogo universiteta, 2011, No. 3, pp. 87–90 (in Russian).
  6. Zamana L. V., Askarov Sh. A., Fluorine in nitric therms of Bauntuntovskaya group (Northern Zabaikalie), Vestnik Buryatskogo gosudarstvennogo universiteta, 2010, No. 3, pp. 8–12 (in Russian).
  7. Lomonosov I. S., Geokhimiya i formirovanie sovremennykh gidroterm Baykal’skoi riftovoi zony, Novosibirsk: Nauka, Sibirskoe otdelenie, 1974, 166 p. (in Russian).
  8. Makarieva O. M., Shikhov A. N., Ostashov A. A., Nesterova N. V., Icings of the Indigirka river basin according to the recent Landsat satellite images and historical data, Led i Sneg, 2019, Vol. 59, No. 2, pp. 201–212 (in Russian), DOI: 10.15356/2076-6734-2019-2-388.
  9. Matuzko A. K., Yakubailik O. E., Monitoring of land surface temperature in Krasnoyarsk and its suburban area based in Landsat-8 satellite data, Uspekhi sovremennogo estestvoznaniya, 2018, No. 7, pp. 177–182 (in Russian).
  10. Nekrasov I. A., Kriolitozona Severo-Vostoka i Yuga Sibiri i zakonomernosti ee razvitiya (Permafrost zone of the North-East and South of Siberia and patterns of its development), Yakutsk: Book Publ. House, 1976, 246 p. (in Russian).
  11. Orgilyanov A. I., Zamana L. V., Mikheev I. E. et al., Nitrogen therms and carbonic waters of the Kuanda-Eimnakch hydromineral region (Northern Transbaikalia), Geografiya i prirodnye resursy, 2021, Vol. 42, No. 3, pp. 129–138 (in Russian), DOI: 10.15372/GIPR20210314.
  12. Tkachuk V. G., Yasnitskaya N. V., Ankudinova G. A., Mineral’nye vody Buryat-Mongol’skoi ASSR (Mineral waters of the Buryat-Mongolian Autonomous Soviet Socialist Republic), Irkutsk: Vostochno-Sibirskoe knizhnoe izd., 1957, 153 p. (in Russian).
  13. Tronin A. A., Shilin B. V., Monitoring of plumes from municipal wastewater treatment plants of Saint Petersburg using aerospace thermal imaging, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 2, pp. 586–594 (in Russian).
  14. Shvartsev S. L., Zippa E. V., Borzenko S. V., The nature of low salinity and composition peculiarities of thermal waters in Jiangxi Province (China), Russian Geology and Geophysics, 2020, Vol. 61, No. 2, pp. 196–213, DOI: 10.15372/RGG2019105.
  15. Gurulev A. A., Kazantsev V. A. (2022a), The specific features of the thermal radiation of lake Kenon during freeze-up in the infrared band, IOP Conf. Ser.: Earth and Environmental Science, Evolution of Biosphere and Technogenesis (2 nd EBT 2021), 2022, Vol. 962, Article 012016, DOI: 10.1088/1755-1315/962/1/012016.
  16. Gurulev A. A., Kazantsev V. A. (2022b), Detección de contaminación térmica de reservorios urbanos por el método de radiometría IR en el ejemplo Del Lago Kenon, Zabaykalsky krai, Nexo Revista Científica, 2022, Vol. 35, Issue 02, pp. 527–532, DOI: 10.5377/nexo.v35i02.14629.
  17. Morse P. D., Wolfe S. A., Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada, J. Geophysical Research: Earth Surface, 2015, Vol. 120, Issue 9, pp. 1670–1686, DOI: 10.1002/2015JF003534.
  18. Sekertekin A., Bonafoni S., Sensitivity Analysis and Validation of Daytime and Nighttime Land Surface Temperature Retrievals from Landsat 8 Using Different Algorithms and Emissivity Models, Remote Sensing, 2020, Vol. 12, Article 2776, DOI: 10.3390/rs12172776.
  19. Vakhnina I. L., Zamana L. V., Pine radial growth in the Trans-Baikalian steppe and Taiga zones as a reflection of the climatic parameters and lake hydrological regime dynamics, IOP Conf. Ser.: Earth and Environmental Science, 2020 Intern. Online Conf. Environmental Transformation and Sustainable Development in Asian Region, EnTransAsia, 2020, IOP Publishing Ltd, 2021, Article 012091, DOI: 10.1088/1755-1315/629/1/012091.
  20. Wan T. F., The tectonics of China, Beijing: Higher Education Press, 2012, 506 p.
  21. Zheng G., Zhang G., Tan S., Feng L., Research on Progress of Forest Fire Monitoring with Satellite Remote Sensing, Agricultural and Rural Studies, 2023, Vol. 1, No. 2, Article 0008, DOI: 10.59978/ar01020008.