Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 2, pp. 23-35
Three-dimensional cloud model reconstruction from cloud base and top heights using passive satellite data
1 V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia
Accepted: 29.03.2024
DOI: 10.21046/2070-7401-2024-21-2-23-35
Information about 3D-distribution of cloud features (including shape and volume) is needed to improve the understanding of convection mechanisms, radiative transfer and propagation of latent heat fluxes, as well as for aviation purposes. The paper presents the results of the estimation of possibilities to reconstruct three-dimensional models for different types of single-layer clouds using only the information about cloud base and top heights obtained from passive satellite data. Not only the main cloud forms are considered, but also some of their subtypes. The input data are MODIS (Moderate Resolution Imaging Spectroradiometer) images in the visible spectrum range with spatial resolution of 1000 m, as well as their data products. The method of three-dimensional cloud model reconstruction from passive satellite data is described. The results of shape reconstruction for different cloud types observed over the territory of Western Siberia in summer are discussed. It is shown that the considered approach allows reconstructing three-dimensional models not only of individual clouds, but also of a cloud field as a whole. It is found that the shapes of cumulus humilis clouds cannot be reconstructed due to low spatial resolution, and the models of some cloud types have strong similarity. Recommendations on the use of the obtained results for solving various scientific and applied problems are given.
Keywords: satellite data, cloud types, three-dimensional cloud model, cloud features, MODIS
Full textReferences:
- Astafurov V. G., Evsyutkin T. V., Kur’yanovich K. V., Skorokhodov A. V., Statistical model of the texture of images of various cloudiness types from MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 188–197 (in Russian).
- Bespalov D. P., Devyatkin A. V., Dovgalyuk Yu. A. et al., Atlas oblakov (Cloud atlas), Saint Petersburg: D’ART Publ. House, 2011, 248 p (in Russian).
- Oblaka i oblachnaya atmosfera (Clouds and cloudy atmosphere), Mazin I. P., Khrgian A. Kh. (eds.), Leningrad: Gidrometeoizdat, 1989, 647 p. (in Russian).
- Skorokhodov A. V., Kur’yanovich K. V., Using CloudSat CPR data to improve the efficiency of the neural network approach to estimating cloud base height in Aqua MODIS satellite images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 8, pp. 63–75 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-63-75.
- Ackerman S. A., Strabala K., Menzel P. et al., Discrimination clear-sky from cloud with MODIS. Algorithm teoretical basis document (MOD35), Wisconsin, MD, USA: NOAA NESDIS, 2006, 125 p.
- Ackerman S. A., Frey R., Heidinger A. et al., EOS MODIS and SNPP VIIRS cloud properties: User guide for the climate data record continuity Level-2 cloud top and optical properties product (CLDPROP), Greenbelt, MD, USA: NASA Goddard Space Flight Center, 2019, 65 p.
- Brüning S., Niebler S., Tost H., Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data, Atmospheric Measurement Techniques, 2024, Vol. 17, pp. 961–978, DOI: 10.5194/amt-17-961-2024.
- Chen S., Cheng C., Zhang X. et al., Construction of nighttime cloud layer height and classification of cloud types, Remote Sensing, 2020, Vol. 12, Article 668, DOI: 10.3390/rs12040668.
- Dobashi Y., Nishita T., Yamashita H., Okita T., Using metaballs to modeling and animate clouds from satellite images, The Visual Computer, 1999, Vol. 15(9), pp. 471–482, DOI: 10.1007/s003710050193.
- Goswami P., A survey of modeling, rendering and animation of clouds in computer graphics, The Visual Computer, 2021, Vol. 37(3–4), pp. 1931–1948, DOI: 10.1007/s00371-020-01953-y.
- Heidinger A., Li Y., Enterprise AWG Cloud Height Algorithm (ACHA). Algorithm theoretical basis document, Silver Spring, MD, USA: NOAA NESDIS, 2019, 64 p.
- Koffi B., Schulz M., Bréon F.-M. et al., Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results, J. Geophysical Research, 2012, Vol. 117, Article D10201, DOI: 10.1029/2011JD016858.
- Kokhanenko G. P., Balin Y. S., Borovoi A. G., Novoselov M. M., Studies of the orientation of crystalline particles in ice clouds by a scanning lidar, Atmospheric and Ocean Optics, 2022, Vol. 35, pp. 509–516, DOI: 10.1134/S1024856022050141.
- Kowsuwan N., Kanongchaiyos P., 3D cloud animation using CA based method, Proc. Intern. Symp. Intelligent Signal Processing and Communication Systems (ISPACS), 2009, pp. 387–392, DOI: 10.1109/ISPACS.2009.5383819.
- Lee B., Di Girolamo L., Zhao G., Zhan Y., Three-dimensional cloud volume reconstruction from the Multi-angle Imaging SpectroRadiometer, Remote Sensing, 2018, Vol. 10. Article 1858, DOI: 10.3390/rs10111858.
- Mace G. G., Zhang Q., The CloudSat radar-lidar geometrical profile product (RL-GeoProf): updates, improvements and selected results, J. Geophysical Research: Atmospheres, 2014, Vol. 119, pp. 9441–9462, DOI: 10.1002/2013JD021374.
- Marshak A., Davis A., 3D radiative transfer in cloudy atmospheres, New York: Springer, 2005, 687 p.
- Marzban C., Leyton S., Colman B., Ceiling and visibility forecasts via neural network, Weather Forecast, 2007, Vol. 22, pp. 466–479, DOI: 10.1175/WAF994.1.
- Mecikalski J. R., Feltz W. F., Murray J. J. et al., Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash, Bull. Amrican Meteorological Socidety, 2007, Vol. 88, pp. 1589–1607, DOI: 10.1175/BAMS-88-10-1589.
- Noh Y.-J., Haynes J. M., Miller S. D. et al., A Framework for satellite-based 3D cloud data: An overview of the VIIRS cloud base height retrieval and user engagement for aviation applications, Remote Sensing, 2022, Vol. 14, Article 5524, DOI: 10.3390/rs14215524.
- Oreopoulos L., Cho N., Lee D., New insights about cloud vertical structure from CloudSat and CALIPSO observations, J. Geophysical Research: Atmospheres, 2017, Vol. 122, pp. 9280–9300, DOI: 10.1002/2017JD026629.
- Platnick S. K., Meyer G., King M. D. et al., The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, pp. 502–525, DOI: 10.1109/TGRS.2016.2610522.
- Razenkov I. A., Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer, Atmosperic and Ocean Optics, 2021, Vol. 34, pp. 229–238, DOI: 10.1134/S102485602103012X.
- Russkova T. V., Shishko V. A., Statistical simulation of laser pulse propagation in cirrus clouds accounting for multiple scattering, Atmospheric and Ocean Optics, 2023, Vol. 36, pp. 384–393, DOI: 10.1134/S1024856023040164.
- Saito M., Yang P., Hu Y. et al., An efficient method for microphysical property retrievals in vertically inhomogeneous marine water clouds using MODIS‐CloudSat measurements, J. Geophysical Research: Atmospheres, 2019, Vol. 124, pp. 2174–2193, DOI: 10.1029/2018JD029659.
- Singer C. E., Lopez-Gomez I., Zhang X., Schneider T., Top-of-atmosphere albedo bias from neglecting three-dimensional cloud radiative effects, J. Atmospheric Sciences, 2021, Vol. 78, No. 12, pp. 4053–4069, DOI: 10.1175/JAS-D-21-0032.1.
- Skorokhodov A. V., Astafurov V. G., Evsutkin T. V., Application of statistical models of image texture and physical parameters of clouds for their classification on MODIS satellite images, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 9, pp. 1053–1064, DOI: 10.1134/S0001433819090482.
- Skorokhodov A. V., Pustovalov K. N., Kharyutkina E. V., Astafurov V. G., Cloud-base height retrieval from MODIS satellite data based on self-organizing neural networks, Atmospheric and Ocean Optics, 2023, Vol. 36, No. 6, pp. 723–734, DOI: 10.1134/S1024856023060209.
- Smith W. L., Minnis P., Fleeger C. et al., Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data, J. Applied Meteorology and Climatology, 2012, Vol. 51, pp. 1794–1810, DOI: 10.1175/JAMC-D-12-057.1.
- Stubenrauch C. J., Cros S., Guignard A., Lamquin N., A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat, Atmospheric Chemistry and Physics, 2010, Vol. 10, pp. 7197–7214, DOI: 10.5194/acp-10-7197-2010.
- Wallace J. M., Hobbs P. V., Atmospheric science: an introductory survey, London: Elsevier, 2006, 490 p.
- Wang H., Xu X., Three-dimensional cloud structure construction with fractal modulation on actual measurement, Proc. Intern. Conf. Modeling, Simulation and Analysis (ICMSA-2018), 2018, pp. 247–252, DOI: 10.12783/DTCSE/ICMSA2018/23247.
- Wang F., Liu Y., Zhou Y. et al., Retrieving vertical cloud radar reflectivity from MODIS cloud products with CGAN: An evaluation for different cloud types and latitudes, Remote Sensing, 2023, Vol. 15, Article 816, DOI: 10.3390/rs15030816.
- Xie X., Qiao Y., Sun T., The application of the technology of 3D satellite cloud imaging in virtual reality simulation, Data Science J., 2007, Vol. 6, pp. S270–S277, DOI: 10.2481/dsj.6.S270.
- Yu H., Ma J., Ahmad S. et al., Three-dimensional cloud structure reconstruction from the Directional Polarimetric Camera, Remote Sensing, 2019, Vol. 11, Article 2894, DOI: 10.3390/rs11242894.
- Zhou H., Bi S., Gong Y. et al., Three-dimensional cloud simulation of satellite cloud map based on SPH method, J. System Simulation, 2019, Vol. 31, No. 7, pp. 1300–1312, DOI: 10.16182/j.issn1004731x.joss.17-0233.