ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 2, pp. 286-299

Analysis of oceanographic conditions for Japanese mackerel fishery based on satellite and modelling data in the South Kuril Strait in 2020–2022

M.V. Budyansky 1 , M.A. Lebedeva 1, 2 , T.V. Belonenko 2 , P.A. Fayman 1 , A.A. Baitaliuk 3 , E.V. Samko 3 , Yu.V. Novikov 3 , R.E. Smagin 2 , A.A. Krutz 4 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
3 Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch, Vladivostok, Russia
4 Far Eastern Regional Hydrometeorological Research Institute, Vladivostok, Russia
Accepted: 26.03.2024
DOI: 10.21046/2070-7401-2024-21-2-286-299
In the study, the oceanographic conditions leading to the formation of Japanese mackerel aggregations in the South Kuril Strait are analyzed. Information on mackerel catch locations from 2020 to 2022 was utilized. To comprehensively investigate oceanographic data, Lagrangian modeling methods and Eulerian approaches were employed. Geostrophic current fields calculated from satellite altimetry data (AVISO) were used to construct Lagrangian maps. Information on temperature and salinity distribution in the South Kuril Strait was obtained from the GLORYS12V1 reanalysis. Favorable conditions for the formation of commercial Japanese mackerel aggregations were identified for different months during the study periods. Their comparison was conducted with typical hydrological conditions in the research area. The influence of the South Kuril Straits and Oyashio waters on fishing grounds was examined.
Keywords: Japanese mackerel, fishery, AVISO, geostrophic currents, fishery oceanographic conditions, GLORYS12V1 reanalysis
Full text

References:

  1. Belyaev V. A., Ekosistema zony techeniya Kurosio i ee dinamika (Ecosystem of the Kuroshio current zone and its dynamics), Khabarovsk: Khabarovsk Book Publ. House, 2003, 382 p. (in Russian).
  2. Vlasova G. A., Vasiliev A. S., Shevchenko G. V., Prostranstvenno-vremennaya izmenchivost’ struktury i dina­miki vod Okhotskogo morya (Spatial and temporal variability of the structure and dynamics of the waters of the Sea of Okhotsk), Moscow: Nauka Publ. House, 2008, 360 p. (in Russian).
  3. Istoki Oiyasio (The Origins of Oyashio), A. N. Michurin, V. R. Foux (eds.), Saint Petersburg: Saint Petersburg State University, 1997, 248 p. (in Russian).
  4. Promysel bioresursov v vodakh Kuril’skoi gryady: sovremennaya struktura, dinamika i osnovnye elementy (Fishing Resources Harvesting in the Waters of the Kuril Ridge: Modern Structure, Dynamics, and Key Elements), 2013, A. V. Buslov (ed.), Yuzhno-Sakhalinsk, 265 p. (in Russian).
  5. Filatov V. N., Migratsii i formirovanie skoplenii massovykh pelagicheskikh gidrobiontov (na primere tikho­okeanskoi sairy) (Migrations and formation of clusters of mass pelagic hydrobionts (on the example of the Pacific saury)), Rostov-on-Don: Southern Science Center RAS Publ. House, 2015, 168 p. (in Russian).
  6. Shuntov V. P., Biologiya dal’nevostochnykh morei Rossii. T. 3 (Biology of the Far Eastern seas of Russia. V. 3), Vladivostok: Publ. House TINRO Center, 2022, 445 p. (in Russian).
  7. Budyansky M. V., Kulik V. V., Kivva K. K. et al., Lagrangian Analysis of Pacific Waters in the Sea of Okhotsk Based on Satellite Data in Application to the Walleye Pollock Fishery, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, pp. 1427–1437, https://doi.org/10.1134/S0001433822120088.
  8. Church J. A., White N. J., Sea-Level Rise from the Late 19th to the Early 21st Century, Surveys in Geophysics, 2011, Vol. 32, pp. 582–602, https://doi.org/10.1007/s10712-011-9119-1.
  9. Fayman P. A., Prants S. V., Budyansky M. V., Uleysky M. Yu., New Circulation Features in the Okhotsk Sea from a Numerical Model, Izvestiya, Atmospheric and Oceanic Physics, 2020, Vol. 56, pp. 618–631, https://doi.org/10.1134/S0001433820060043.
  10. Fayman P. A., Prants S. V., Budyansky M. V., Uleysky M. Yu., Simulated Pathways of the Northwestern Pacific Water in the Okhotsk Sea, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, pp. 329–340, https://doi.org/10.1134/S000143382103004X.
  11. Iton M., Ohshima K. I., Seasonal variations of water masses and sea level in the southwestern part of the Okhotsk sea, J. Oceanography, 2000, Vol. 56, No. 6, pp. 643–654, https://doi.org/10.1023/A:1011121632160.
  12. Kulik V., Baitaliuk A., Katugin O., Budyansky M., Uleysky M., New predictors for tracking the habitat of chub mackerel (Scomber japonicus), NPFC-2023-TWG CMSA07-WP05, 2023, https://www.npfc.int/new-predictors-tracking-habitat-chub-mackerel-scomber-japonicus.
  13. Prants S. V., Dynamical systems theory methods to study mixing and transport in the ocean, Physica Scripta, 2013, Vol. 87, Article 038115, https://doi.org/10.1088/0031-8949/87/03/038115.
  14. Prants S. V., Chaotic Lagrangian transport and mixing in the ocean, The European Physical J. Special Topics, 2014, Vol. 223, No. 13, pp. 2723–2743, https://doi.org/10.1140/epjst/e2014-02288-5.
  15. Prants S. V., Uleysky M. Yu., Budyansky M. V. (2017a), Lagrangian Oceanography: Large-scale Transport and Mixing in the Ocean, Ser. Physics of Earth and Space Environments. Berlin, Germany: Springer-Verlag, 2017, 273 p., https://doi.org/10.1007/978-3-319-53022-2.
  16. Prants S. V., Budyansky M. V., Uleysky M. Yu. (2017b), Statistical analysis of Lagrangian transport of subtropical waters in the Japan Sea based on AVISO altimetry data, Nonlinear Processes in Geophysics, 2017, Vol. 24, No. 1, pp. 89–99, https://doi.org/10.5194/npg-24-89-2017.
  17. Takizawa T., Characteristics of the Soya Warm Current in the Okhotsk Sea, J. Oceanographical Society of Japan, 1982, Vol. 38, pp. 281–292, https://doi.org/10.1007/BF02114532.
  18. Wang H., Ren K., Lina M. et al., Long-term mean circulation in the Japan Sea as reproduced by multiple eddy-resolving ocean circulation models, Frontiers in Marine Science, 2022, Vol. 9, Article 1050028, https://doi.org/10.3389/fmars.2022.1050028.