ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 2, pp. 177-195

Monitoring forest cover in riparian zones along the rivers of Mari El Republic using satellite data

L.V. Tarasova 1 , E.A. Kurbanov 1 , O.N. Vorobiev 1 , H. Bui 2 , S.A. Lezhnin 1 , D.M. Dergunov 1 
1 Volga State University of Technology, Yoshkar-Ola, Russia
2 Vietnam National University of Forestry, Hanoi, Vietnam
Accepted: 13.03.2024
DOI: 10.21046/2070-7401-2024-21-2-177-195
Landsat satellite data is widely used for monitoring forest cover. The use of the Google Earth Engine (GEE) cloud platform allows for the analysis of these data using various methods. The aim of this study is to investigate the dynamics and disturbance of forest cover in riparian zones from 1984 to 2022 based on Landsat time-series imagery. The study focuses on forested areas located within a 200-meter buffer zone along the 23 largest rivers in the Republic of Mari El. The classification of Landsat time-series data into four land cover classes using the Random Forest (RF) algorithm in GEE was carried out. At the first stage, 85 Landsat time-series images were classified, and the structure and dynamics of the classes were analyzed, resulting in a map of land cover changes. At the second stage, the LandTrendr algorithm was applied to detect areas of disturbance in the forest cover over the study period. The analysis of Landsat data revealed that overall, from 1984 to 2022, there has been an increase in forest cover area due to the replacement of non-forest areas and coniferous forests with deciduous forests. The greatest changes in disturbance indices were observed during the periods of 1985–1992 and 2010–2011, which can be attributed to the consequences of flooding in riparian forests and major wildfires in 2010. The application of cloud technologies and methodological approaches for change detection allows for the assessment of dynamics and disturbance based on multi-temporal satellite imagery at a regional scale.
Keywords: riparian forests, remote sensing, Google Earth Engine, Landsat, Random Forest, LandTrendr
Full text

References:

  1. Bartalev S. A., Loupian E. A., Stytsenko F. V., Panova O. Yu., Efremov V. Yu., Rapid mapping of forest burnt areas over Russia using Landsat data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 9–20 (in Russian).
  2. Vorobev O. N., Kurbanov E. A., Polevshchikova Yu. A., Lezhnin S. A., Assessment of dynamics and disturbance of forest cover in the Middle Povolzhje by Landsat images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 14, pp. 124–134 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-124-134.
  3. Vorob’ev O. N. Kurbanov E. A., Demisheva E. N., Men’shikov S. A., Ali M. S., Smirnova L. N., Tarasova L. V., Distantsionnyi monitoring ustoichivosti lesnykh ekosistem: monografiya (Remote monitoring of forest ecosystems sustainability), Yoshkar-Ola: Volga State University of Technology, 2019, 166 p. (in Russian).
  4. Voronkov N. A., Rol’ lesov v okhrane vod (The role of forests in water protection), Leningrad: Gidrometeoizdat, 1988. 279 p. (in Russian).
  5. Vypritskii A. A., Shinkarenko S. S., Analysis of soil and climatic factors influence on the protective forest condition based on Sentinel-2 data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 147–163 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-147-163.
  6. Gazizullin A. Kh., Pochvenno-ekologicheskie usloviya formirovaniya lesov Srednego Povolzh’ya (Soil-ecological conditions of forest formation in the Middle Volga region), Kazan: RITS “Shkola”, 2005, 496 p.
  7. Goncharov E. A., Anufriev M. A., Obukhov A. G., Sevostianova L. I., Characteristics of spacial distribution of hydrological and ecological figures of river net in Mari El Republic, Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Les. Ekologiya. Prirodopol’zovanie, 2020, Vol. 48, No. 4, pp. 61–76 (in Russian), DOI: 10.25686/2306-2827.2020.4.61.
  8. State report “On the state and use of water resources of the Russian Federation in 2009”, Ministry of Natural Resources and Ecology of the Russian Federation, Moscow: NIA-Priroda, 2010, 288 p. (in Russian).
  9. Demakov Yu. P., Isaev A. V., Structure and regularities of tree stand development in flood-plain forests of Mari El Republic, Siberian J. Forest Science, 2019, No. 6, pp. 111–125 (in Russian), DOI: 10.15372/SJFS20190612.
  10. Dubenok N. N., Lebedev A. V., Gemonov A. V., Hydrological role of forest of the small drainage area, Rossiiskaya sel’skokhozyaistvennaya nauka, 2021, No. 3, pp. 3–6 (in Russian), DOI: 10.31857/S2500262721030017.
  11. Kirbizhekova I. I., Chimitdorzhiev T. N., Dmitriev A. V., A method for reforestation monitoring based on joint analysis of optical-microwave data on the NDVI–RVI plane, Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 165–174 (in Russian), DOI: 10.21046/2070-7401-2023-20-4-165-174.
  12. Kireeva M. B., Ilich V. P., Sazonov A. A., Mikhaylyukova P. G., An assessment of changes in land usage and their impact on Don River basin runoff using satellite imagery, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 191–200 (in Russian), DOI: 10.21046/2070-7401-2018-15-2-191-200.
  13. Kurbanov E. A., Vorob’ev O. N., Retrospective analysis of vegetation cover loss in Republics of Mari El and Chuvashia after flooding of Cheboksarskaya dam from Landsat/MSS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 127‒137 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-127-137.
  14. Kurbanov E. A., Vorobyev O. N., Gubayev A. V. et al., Four decades of forest research with the use of Landsat images, Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Les. Ekologiya. Prirodopol’zovanie, 2014, Vol. 21, No. 1, pp. 18–32 (in Russian).
  15. Melekhov I. S., Lesovedenie (Forestry), Moscow: Lesnaya promyshlennost’, 1980, 408 p. (in Russian).
  16. Ostroukhov A. V., Klevtsov D. R., Informativeness of vegetation indices in assessing post-cutting restoration of dark coniferous forests in Northern Sikhote-Alin according to data from Landsat series satellites, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 194‒204 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-194-204.
  17. Raevsky B. V., Tarasenko V. V., Petrov N. V., Inventory of the current state and changes in vegetation cover of the Onega Peninsula using staggered Landsat images, Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 145–155 (in Russian), DOI: 10.21046/2070-7401-2021-18-5-145-155.
  18. Tarasova L. V., Kurbanov E. A., Vorobiev O. N., Lezhnin S. A., Assessment of multi-season Sentinel-2 images for classification of forest cover in riparian zones of Mari Zavolzhye, Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Les. Ekologiya. Prirodopol’zovanie, 2014, Vol. 21, No. 1, pp. 18–32 (in Russian), DOI: 10.25686/2306-2827.2023.2.77.
  19. Shinkarenko S. S., Bartalev S. A., Vasilchenko A. A., Method for protective forest plantations mapping based on multi-temporal high spatial resolution satellite images and Bi-Season Forest Index, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 12, No. 4, pp. 207–222 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-207-222.
  20. Janiec P. K., Ivanova S. A., Danilov Yu. G., Using Google Earth engine (GEE) and Landsat satellite images to detect forest fires, Vestnik Severo-Vostochnogo federal’nogo universiteta im. M. K. Ammosova, 2022, No. 2(26), pp. 22–31 (in Russian), DOI: 10.25587/SVFU.2022.26.2.003.
  21. Breiman L., Random forests, Machine Learning, 2001, No. 45, pp. 5–32, DOI: 10.1023/A:1010933404324.
  22. Breiman L., Classification and regression trees (eBook), Routledge, 2017, 368 p., DOI: 10.1201/9781315139470.
  23. Chen S., Woodcock C. E., Bullock E. L. et al., Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis, Remote Sensing of Environment, 2021, Vol. 265, Article 12648, DOI: 10.1016/j.rse.2021.112648.
  24. Cutler D. R., Edwards T. C., Beard K. H. et al., Random forests for classification in ecology, Ecology, 2007, Vol. 88, Issue 11, pp. 2783–2792, DOI: 10.1890/07-0539.1.
  25. Fragal E. H., Silva T. S. F., Novo E., Reconstructing historical forest cover change in the Lower Amazon floodplains using the LandTrendr algorithm, Acta Amazonica, 2016, Vol. 46, No. 1, pp. 13–24, DOI: 10.1590/1809-4392201500835.
  26. Gao B., NDWIA — normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, 1996, Vol. 58, No. 3, pp. 257–266, DOI: 10.1016/S0034-4257(96)00067-3.
  27. Hird J. N., Kariyeva J., McDermid G. J., Satellite time series and Google Earth Engine democratize the process of forest-recovery monitoring over large areas, Remote Sensing, 2021, Vol. 13, No. 23, Article 4745, DOI: 10.3390/rs13234745.
  28. Islam M. R., Khan M. N. I., Khan M. Z., Roy B., A three-decade assessment of forest cover changes in Nijhum dwip national park using remote sensing and GIS, Environmental Challenges, 2021, Vol. 4, Article 100162, DOI: 10.1016/j.envc.2021.100162.
  29. Jamaluddin I., Chen Y.-N., Ridha S. M. et al., Two decades mangroves loss monitoring using random forest and Landsat data in east Luwu, Indonesia (2000–2020), Geomatics, 2022, Vol. 2, No. 3, pp. 282–296, DOI: 10.3390/geomatics2030016.
  30. Kennedy R. E., Yang Z., Gorelick N. et al., Implementation of the LandTrendr algorithm on Google Earth Engine, Remote Sensing, 2018, Vol. 10, No. 5, Article 691, DOI: 10.3390/rs10050691.
  31. Key C. H., Benson N. C., Landscape Assessment (LA): Sampling and Analysis Methods, In: FIREMON: Fire Effects Monitoring and Inventory System. General Technical Report RMRS-GTR-164-CD, Lutes D. C., Keane R. E., Caratti J. F., Key C. H., Benson N. C., Sutherl S., Gangi L. J. (eds.), Department of Agriculture, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA, 2006, Vol. 164, 55 p.
  32. Li Y., Wu Z., Xu X. et al., Forest disturbances and the attribution derived from yearly Landsat time series over 1990–2020 in the Hengduan Mountains Region of Southwest China, Forest Ecosystems, 2021, Vol. 8, Article 73, DOI: 10.1186/s40663-021-00352-6.
  33. Pasquarella V. J., Arévalo P., Bratley K. H. et al., Demystifying LandTrendr and CCDC temporal segmentation, Intern. J. Applied Earth Observation and Geoinformation, 2022, Vol. 110, Article 102806, DOI: 10.1016/j.jag.2022.102806.
  34. Pericolo O., Camarero J. J., Colangelo M. et al., Species specific vulnerability to increased drought in temperate and Mediterranean floodplain forests, Agricultural and Forest Meteorology, 2023, Vol. 328, Article 109238, DOI: 10.1016/j.agrformet.2022.109238.
  35. Phan T. N., Kuch V., Lehnert L. W., Land cover classification using Google Earth Engine and Random Forest classifier — the role of image composition, Remote Sensing, 2020, Vol. 12, No. 15, Article 2411, DOI: 10.3390/rs12152411.
  36. Praticò S., Solano F., Di Fazio S., Modica G., Machine learning classification of Mediterranean forest habitats in Google Earth Engine based on seasonal Sentinel-2 time series and input image composition optimization, Remote Sensing, 2021, Vol. 13, No. 4, Article 586, DOI: 10.3390/rs13040586.
  37. Purwanto A. D., Wikantika K., Deliar A., Darmawan S., Decision tree and random forest classification algorithms for mangrove forest mapping in Sembilang national park, Indonesia, Remote Sensing, 2023, Vol. 15, No. 1, Article 16, DOI: 10.3390/rs15010016.
  38. Tucker C. J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 1979, Vol. 8, No. 2, pp. 127–150, DOI: 10.1016/0034-4257(79)90013-0.
  39. Viana-Soto A., Aguado I., Salas J., García M., Identifying post-fire recovery trajectories and driving factors using Landsat time series in fire-prone Mediterranean pine forests, Remote Sensing, 2020, Vol. 12, No. 9, Article 1499, DOI: 10.3390/rs12091499.
  40. Vorobev O. N., Kurbanov E. A., Lezhnin S. A. et al., Monitoring and assessment of forest cover disturbance in the Middle Volga region of Russia using Landsat images, IOP Conf. Series: Earth and Environmental Science (FORECO 2021), 2021, Vol. 932, Article 012007, DOI: 10.1088/1755-1315/932/1/012007.
  41. Xu F., Otte A., Ludewig K. et al., Land cover changes (1963–2010) and their environmental factors in the upper Danube floodplain, Sustainability, 2017, Vol. 9, No. 6, Article 943, DOI: 10.3390/su9060943.
  42. Zhu Z., Woodcock C. E., Olofsson P., Continuous monitoring of forest disturbance using all available Landsat imagery, Remote Sensing of Environment, 2012, Vol. 122, pp. 75–91, DOI: 10.1016/j.rse.2011.10.030.