ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 2, pp. 9-22

Analysing the efficiency of the global weather model HRES (GACOS) for correction of atmospheric noise in interferometric estimates of displacement fields on the example of volcanoes in Kamchatka

M.S. Volkova 1 , V.O. Mikhailov 1 , R.S. Osmanov 1 
1 Schmidt Institute of Physics of the Earth RAS, Moscow, Russia
Accepted: 27.02.2024
DOI: 10.21046/2070-7401-2024-21-2-9-22
We investigate the actual problem of elimination of atmospheric phase delays in the calculation of displacement fields by differential interferometry (Differential Interferometry Synthetic Aperture Radar — DInSAR) using satellite radar images of Kamchatka peninsula. The atmospheric correction model GACOS (Generic Atmospheric Correction Online Service), based on the HRES (High Resolution) weather model, was tested to correct displacement fields obtained from Sentinel 1A satellite images of the volcanic regions of northern, central and southern Kamchatka (Tolbachik, Mutnovsky-Gorely volcanoes, Karymsky volcanic center, Avachinsky-Koryak group of volcanoes). According to statistical estimates of the effectiveness of the introduced atmospheric corrections, a positive result was observed for 63.3 % of interferograms. The tropospheric component is not completely removed, but to a significant extent, while the turbulent component remains unchanged in the corrected results along with the deformation component. In some cases, subtracting the atmospheric correction added additional noise to the displacement field. We used statistical criteria to assess the effectiveness of the applied corrections. For the corrected displacement field results, the maximum standard error reduced from 0.022 to 0.011 m. In general, taking into account the extreme conditions of the Kamchatka region for satellite radar interferometry (weather, topography, low coherence of natural landscapes, low signal-to-noise ratio in interferograms), with a positive statistical effect from the introduced correction, the weather model HRES (GACOS) is recommended to be applied when using differential interferometry methods for this territory.
Keywords: satellite interferometry, SAR, Sentinel 1A, weather model, HRES, GACOS, atmospheric noise, phase delay, volcanoes, Kamchatka
Full text

References:

  1. Ingel L. Kh., Makosko A. A., On the influence of gravity field inhomogeneities on heat exchange of the atmosphere with the underlying surface, Geophysical Research, 2022, Vol. 23, No. 3, pp. 5–13 (in Russian), https://doi.org/10.21455/gr2022.3-1.
  2. Baran I., Stewart M. P., Kampes B. M. et al., A modification to the Goldstein radar interferogram filter, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, No. 9, pp. 2114–2118, DOI: 10.1109/TGRS.2003.817212.
  3. Beauducel F., Briole P., Froger J. L., Volcano-wide fringes in ERS synthetic aperture radar interferograms of Etna (1992–1998): Deformation or tropospheric effect? J. Geophysical Research: Solid Earth, 2000, Vol. 105, Issue B7, pp. 16391–16402, DOI: 10.1029/2000jb900095.
  4. Bekaert D. P. S., Hooper A., Wright T. J., A spatially variable power law tropospheric correction technique for InSAR data, J. Geophysical Research: Solid Earth, 2015, Vol. 120, pp. 1345–1356, https://doi.org/10.1002/2014JB011558.
  5. Biggs J., Dogru F., Dagliyar A. et al., Baseline monitoring of volcanic regions with little recent activity: application of Sentinel 1 InSAR to Turkish volcanoes, J. Applied Volcanology, 2021, Vol. 10, DOI: 10.1186/s13617-021-00102-x.
  6. Chaabane F., Avallone A., Tupin F. et al., A Multitemporal Method for Correction of Tropospheric Effects in Differential SAR Interferometry: Application to the Gulf of Corinth Earthquake, IEEE Trans. Geoscience and Remote Sensing, 2007, Vol. 45, Issue 6, pp. 1605–1615, DOI: 10.1109/tgrs.2007.894026.
  7. Darvishi M., Cuozzo G., Bruzzone L., Nilfouroushan F., Performance Evaluation of Phase and Weather-Based Models in Atmospheric Correction With Sentinel 1 Data: Corvara Landslide in the Alps, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2020, Vol. 13, pp. 1332–1346, https://doi.org/10.1109/jstars.20.
  8. Deledalle C. A., Tupin F., Denis L., A non-local approach for SAR and interferometric SAR denoising. IEEE Intern. Geoscience and Remote Sensing Symp., 2010, pp. 714–717, DOI: 10.1109/igarss.2010.5654217.
  9. Deledalle C. A., Denis L., Tupin F., NL-InSAR: Nonlocal interferogram estimation, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, Issue 4, pp. 1441–1452, DOI: 10.1109/tgrs.2010.2076376.
  10. Doin M. P., Lasserre C., Peltzer G. et al., Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models, J. Applied Geophysics, 2009, Vol. 69, Issue 1, pp. 35–50, DOI: 10.1016/j.jappgeo.2009.03.010.
  11. Ferretti A., Prati C., Rocca F., Permanent scatterers in SAR interferometry. In: IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, Issue 1, pp. 8–20, https://doi.org/10.1109/36.898661.
  12. Goldstein R. M., Werner C. L., Radar interferogram filtering for geophysical applications, Geophysical Research Letters, 1998, Vol. 25, pp. 4035−4038, DOI: 10.1029/1998gl900033.
  13. Hanssen R. F., Radar Interferometry: Data Interpretation and Error Analysis, Dordrecht: Kluwer Academic Publishers, 2001, 308 p., https://doi.org/10.1007/0-306-47633-9.
  14. Hooper A., Zebker H., Segall P., Kampes B., A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 2004, Vol. 31, Issue 23, DOI: 10.1029/2004gl021737.
  15. Li Z., Fielding E. J., Cross P., Preusker R., Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models, Intern. J. Remote Sensing, 2009, Vol. 30, Issue 13, pp. 3343–3363, DOI: 10.1080/01431160802562172.
  16. Parker A. L., Biggs J., Walters R. J. et al., Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: application to the Cascade volcanoes, United States, Remote Sensing of Environment, 2015, Vol. 170, pp. 102–114, DOI: 10.1016/j.rse.2015.09.003.
  17. Stephens K. J., Wauthier C., Bussard R. C. et al., Assessment of Mitigation Strategies for Tropospheric Phase Contributions to InSAR Time-Series Datasets over Two Nicaraguan Volcanoes, Remote Sensing, 2020, Vol. 12, No. 5, Article 782, DOI: 10.3390/rs12050782.
  18. Wang Y., Chang L., Feng W. et al., Topography-correlated atmospheric signal mitigation for InSAR applications in the Tibetan plateau based on global atmospheric models, Intern. J. Remote Sensing, 2021, Vol. 42, No. 11, pp. 4361–4379, DOI: 10.1080/01431161.2021.1892856.
  19. Yu C., Penna N. T., Li Z. (2017a), Generation of real-time mode high-resolution water vapor fields from GPS observations, J. Geophysical Research: Atmospheres, 2017, Vol. 122, pp. 2008–2025, DOI: 10.1002/2016jd025753.
  20. Yu C., Li Z., Penna N. T. (2017b), Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model, Remote Sensing of Environment, 2017, Vol. 204, pp. 109–121, DOI: 10.1016/j.rse.2017.10.038.
  21. Yu C., Li Z., Penna N. T., Crippa P., Generic atmospheric correction model for interferometric synthetic aperture radar observations, J. Geophysical Research: Solid Earth, 2018, Vol. 123, pp. 9202–9222, https://doi.org/10.1029/2017JB015305.