ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 2, pp. 325-335

Assessment of aerosol pollution in Saint Petersburg and Voeykovo based on the results of synchronous lidar measurements

D.A. Samulenkov 1 , M.V. Sapunov 1 , E.V. Abakumov 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 26.03.2024
DOI: 10.21046/2070-7401-2024-21-2-325-335
The article presents the results of synchronous lidar measurements in the village of Voeykovo, Leningrad Region, and the city of Saint Petersburg conducted to assess the variability of aerosol content within the city and beyond. The measurements were carried out by mobile and stationary lidar complexes of the “Observatory of Environmental Safety” Resource Center of the Science Park of Saint Petersburg State University. The measurements were taken once in the summer and autumn seasons of 2023 during daytime and captured the moment the weather balloon was launched, which made it possible to control the wind direction using two methods: lidar technology and a radiosonde. A significant excess in the content of aerosol particles in Saint Petersburg compared to Voeykovo is observed in the summer season when the content of particles in the air column is almost 2.5 times higher over Saint Petersburg. In autumn, the differences are insignificant, which is due to the direction of movement of air masses and their speed. Analysis of the data obtained — aerosol concentrations and wind directions — allows us to conclude that the main contribution to atmospheric pollution by aerosol particles is due to sources located in Saint Petersburg and near the city.
Keywords: aerosol, lidar, wind speed, atmosphere, pollution
Full text

References:

  1. Balin Yu. S., Kokhanenko G. P., Klemasheva M. G. et al., “LOSA-S” — a basic lidar of the Russian segment of CIS-LiNet, Optika atmosfery i okeana, 2017, Vol. 30, No. 12, pp. 1065–1068 (in Russian), DOI: 10.15372/AOO20171210.
  2. Veselovskii I. A., Distantsionnaya lazernaya diagnostika aerozol’nykh i gazovykh sostavlyayushchikh atmosfery metodami romanovskogo i uprugogo rasseyaniya: Diss. dokt. fiz.-mat. nauk (Remote laser diagnostics of aero sol and gas constituents of the atmosphere by Roman and elastic scattering methods, Dr. phys. math. sci. thesis), Moscow, 2005, 391 p. (in Russian).
  3. Volkova K. A., Poberovsky A. V., Timofeev Yu. M. et al., Aerosol optical characteristics retrieved from measurements of CIMEL sun photometer (AERONET) near Saint Petersburg, Optika atmosfery i okeana, 2018, Vol. 31, No. 6, pp. 425–431 (in Russian), DOI: 10.15372/AOO20180601.
  4. Ginzburg A. S., Gubanova D. P., Minashki V. M., The influence of natural and anthropogenic aerosols on global and regional climate, Rossiiskii khimicheskii zhurnal, 2008, Vol. 52, No. 5, pp. 112–119 (in Russian).
  5. Zhdanova E. Yu., Chubarova N. E., Spatial variability of aerosol optical thickness on the territory of Moscow and Moscow Region by satellite and ground based data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018. Vol. 15, No. 7, pp. 236–248 (in Russian), DOI: 10.21046/2070-7401-2018-15-7-236-248.
  6. Zuev V. E., Makienko E. V., Naats I. E., Determination of optical properties of stratospheric aerosols using ground-based lidars, Doklady Akademii nauk, 1982, Vol. 265, No. 5, pp. 1105–1107 (in Russian).
  7. Ivlev L. S., Khimicheskii sostav i struktura atmosfernykh aerozolei (Chemical composition and structure of atmospheric aerosols), Leningrad: Izd. Leningradskogo universiteta, 1982, 366 p. (in Russian).
  8. Ivlev L. S., Aerosol forcing in climate processes, Optika atmosfery i okeana, 2011, Vol. 24, No. 5, pp. 392–410 (in Russian).
  9. Ivlev L. S., Aerosols and global climate change, Obshchestvo. Sreda. Razvitie, 2012, No. 4, pp. 238–244 (in Russian).
  10. Rozenberg G. V., Optical studies of atmospheric aerosol, Uspekhi fizicheskikh nauk, 1968, Vol. 95, No. 1, pp. 159–208 (in Russian).
  11. Romanovskaya A. Yu., Savin I. Yu., Soil dust aerosol in the atmosphere: sources, quantities, properties (overview), Byulleten’ Pochvennogo instituta imeni V. V. Dokuchaeva, 2021, Issue 109, pp. 36–95 (in Russian), DOI: 10.19047/0136-1694-2021-109-36-95.
  12. Saltykova M. M., Bobrovnitsky I. P., Fedichkina T. P., Balakaeva A. V., Yakovlev M. Yu., Impact of ambient air pollution on the mortality structure, Intern. J. Applied and Fundamental Research, 2019, No. 6, pp. 96–100 (in Russian).
  13. Samulenkov D. A., Sapunov M. V., Results of lidar monitoring in the Vyborgsky district of the Leningrad region and St. Petersburg, Hydrometeorology and Ecology, 2023, No. 73, pp. 653–665 (in Russian), DOI: 10.33933/2713-3001-2023-73-653-665.
  14. Shabelnik E. S., Study of the effect of air aerosol on the condition and appearance of buildings and structures, Perspektivnye tekhnologii v stroitel’stve i tekhnosfernoi bezopasnosti: Proc., Shakhty: ISOiP DGTU, 2020, pp. 94–101 (in Russian).
  15. Bari Md. A., Kindzierski W. B., Characterization of air quality and fine particulate matter sources in the town of Hinton, Alberta, Atmospheric Pollution Research, 2018, Vol. 9, Issue 1, pp. 84–94, DOI: 10.1016/j.apr.2017.07.003.
  16. Chubarova N. Y., Sviridenkov M. A., Smirnov A., Holben B. N., Assessments of urban aerosol pollution in Moscow and its radiative effects, Atmospheric Measurement Techniques, 2011, Vol. 4. No. 2, pp. 367–378, DOI: 10.5194/amt-4-367-2011.
  17. Filonchyk M., Peterson M. P., Zhang L., Yan H., An analysis of air pollution associated with the 2023 sand and dust storms over China: Aerosol properties and PM10 variability, Geoscience Frontiers, 2024, Vol. 15, Issue 2, Article 101762, DOI: 10.1016/j.gsf.2023.101762.
  18. Friedlingstein P., Cox P., Betts R. et al., Climate-carbon cycle feedback analysis: Results from the C4MIP Model Intercomparison, J. Climate, 2006, Vol. 19, Issue 14, pp. 3337–3353, DOI: 10.1175/jcli3800.1.
  19. Hoff R. M., McCann K. J., Demoz B., Reichard J., Whiteman D. N., McGee T., McCormick M. P., Philbrick C. R., Strawbridge K., Moshary F., Gross B., Ahmed S., Venable D., Joseph E., Regional East Atmospheric Lidar Mesonet: REALM, ILRC, European Space Agency, 2002, pp. 1–4.
  20. Klett J. D., Lidar inversion with variable backscatter/extinction ratios, Applied Optics, 1985, Vol. 24, pp. 1638–1643.
  21. Kondratyev K. Ya., Ivlev L. S., Krapivin V. F., Varotsos C. A., Atmospheric Aerosol Properties, Formation, Processes and Impacts, Chichester, UK: Springer Publ. Praxis, 2005, 572 p.
  22. Lee H. H., Choi N. R., Lim H. B. et al., Characteristics of oxygenated PAHs in PM10 at Seoul, Korea, Atmospheric Pollution Research, 2018, Vol. 9, Issue 1, pp. 112–118, DOI: 10.1016/j.apr.2017.07.007.
  23. Li J., Wang Z., Huang H. et al., Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China, Tellus B, 2013, Vol. 65, Issue 1, Article 20052, DOI: 10.3402/tellusb.v65i0.20052.
  24. Lisetskii F., Borovlev A., Monitoring of Emission of Particulate Matters and Air Pollution using Lidar, Belgorod, Russia, Aerosol and Air Quality Research, 2019, Vol. 19, pp. 504–515, DOI: 10.4209/aaqr.2017.12.0593.
  25. Liu B., Ma Y., Gong W. et al., Study of continuous air pollution in winter over Wuhan based on ground-based and satellite observations, Atmospheric Pollution Research, 2018, Vol. 9, Issue 1, pp. 156–165, DOI: 10.1016/j.apr.2017.08.004.
  26. Liu X. G., Li J., Qu Y. et al., Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China, Atmospheric Chemistry and Physics, 2013, Vol. 13, Issue 9, pp. 4501–4514, DOI: 10.5194/acp-13-4501-2013.
  27. Ma J., Chen Y., Wang W. et al., Strong air pollution causes widespread hazeclouds over China, J. Geophysical Research, 2010, Vol. 115, Issue D18, Article 204, DOI: 10.1029/2009JD013065.
  28. Nisbet I. C., LaGoy P. K., Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regulatory Toxicology and Pharmacology, 1992, Vol. 16, Issue 3, pp. 290–300, DOI: 10.1016/0273-2300(92)90009-x.
  29. Nishizawa T., Sugimoto N., Matsui I. et al., The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and Progress, EPJ Web Conf., 2016, Vol. 119, Article 19001, DOI: 10.1051/epjconf/201611919001.
  30. Schmid P. E., Niyogi D., Modeling urban precipitation modification by spatially heterogeneous aerosols, J. Applied Meteorology and Climatology, 2017, Vol. 56, Issue 8, pp. 2141–2153, DOI: 10.1175/JAMC-D-16-0320.1.
  31. Song C., He J., Wu L. et al., Health burden attributable to ambient PM2.5 in China, Environmental Pollution, 2017, Vol. 223, pp. 575–586, DOI: 10.1016/j.envpol.2017.01.060.
  32. Sun Y., Zhuang G., Tang A. et al., Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing, Environmental Science and Technology, 2006, Vol. 40, Issue 10, pp. 3148–3155, DOI:10.1021/es051533g.
  33. Taneja K., Attri S. D., Ahmad Sh. et al., Comparative assessment of aerosol optical properties over a mega city and an adjacent urban area in India, Mausam, 2017, Vol. 68, pp. 673–688, DOI: 10.54302/mausam.v68i4.767.
  34. Wang J., Zhao B., Wang S. et al., Particulate matter pollution over China and the effects of control policies, Science of the Total Environment, 2017, Vol. 584–585, pp. 426–447, DOI: 10.1016/j.scitotenv.2017.01.027.
  35. Wang Y., Zhuang G., Sun Y., An Zh., The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing, Atmospheric Environment, 2006, Vol. 40, Issue 34, pp. 6579–6591, DOI: 10.1016/j.atmosenv.2006.05.066.
  36. Welton E., Stewart S., Lewis J. et al., Status of the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL, EPJ Web Conf., 2018, Vol. 176, Article 09003, DOI: 10.1051/epjconf/201817609003.
  37. Yabuki M., Kuze H., Lagrosas N. et al., Determination of Vertical Distributions of Aerosol Optical Parameters by Use of Multi-Wavelength Lidar Data, Japanese J. Applied Physics, 2003, Vol. 42, Pt. 1, No. 2A, Article 296, DOI: 10.1109/CLEOPR.2003.1274753.
  38. Yang X., Cheng S., Li J. et al., Characterization of chemical composition in PM2.5 in Beijing before, during, and after a large-scale international event, Aerosol and Air Quality Research, 2017, Vol. 17, Issue 4, pp. 896–907, DOI: 10.4209/aaqr.2016.07.0321.