Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 231-245
Adaptation of MOD14 fire detection algorithm to work with the data of MSU-MR device
D.V. Lozin
1, 2 , E.A. Loupian
1 , I.V. Balashov
1 , M.A. Burtsev
1 , E.E. Volkova
3 , A.A. Mazurov
1 , A.M. Matveev
1 1 Space Research Institute RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 OOO Space Research Institute for the Earth, Moscow, Russia
Accepted: 05.02.2024
DOI: 10.21046/2070-7401-2024-21-1-231-245
The paper describes a modification of the MOD14 (MODIS fire detection algorithm) algorithm to solve the problem of automatic fire detection based on MSU-MR device data (multiband scanner of low spatial resolution; Meteor-M No. 2 series satellites). A brief description of MOD14 and a possible modification of its parameters assessment to adapt to MSU-MR data are given. The process of finding the modified parameters for solving the task is described. A brief description of the modified elements of the algorithm is presented. A scheme for evaluating the quality of the modified algorithm is proposed. The evaluation results of the work by example of processing 2022 MSU-MR data covering the Russian Federation territory are presented. The results of the modified algorithm quality evaluation are also presented: the error of false detection (7.3 % for all fires, 2.9 % for forest) and the error of omissions of fires developing for more than 1 week (0.57 % for all, 0.37 % for forest). Based on the experience gained while adapting MOD14 to work with MSU-MR data, a fairly universal scheme of the MOD14 adaptation process has been developed for using data from various satellite systems with spectral characteristics similar to MODIS (Moderate Resolution Imaging Spectroradiometer) channels. Finally, the tasks are outlined whose solution will fully ensure automatic fire monitoring based on the use of the algorithm that is adapted to MSU-MR data.
Keywords: satellite observations, remote fire monitoring, algorithms, fire detection, MSU-MR device, MOD14 algorithm
Full textReferences:
- Abushenko N. A., Bartalev S. A., Belaev A. I. et al., Experience and prospects for organizing operational satellite monitoring of Russian territory for the purposes of forest fire protection services, Issledovanie Zemli iz kosmosa, 1998, No. 3, pp. 89–95 (in Russian).
- Galeev A. A., Proshin A. A., Ershov D. V. et al., Forest fires satellite monitoring data storage management, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Issue 2, Vol. 2, pp. 367–371 (in Russian).
- Lozin D. V., System of operational construction of fire burning intensity maps and estimates of possible loss of forest vegetation as a result of fire, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 96–106 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-96-106.
- Lozin D. V., Loupian E. A., Balashov I. V. et al., Estimation of northern burnt forests mortality in the XXI century based on MODIS data on fire intensity, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 292–301 (in Russian), DOI: 10.21046/2070-7401-2023-20-2-292-301.
- Loupian E. A., Bartalev S. A., Balashov I. V. et al., Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-158-175.
- Loupian E. A., Proshin A. A., Burtsev M. A. et al., Experience of development and operation of the IKI-Monitoring Shared Use Center for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
- Loupian E. A., Lozin D. V., Balashov I. V. et al., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 217–232 (in Russian), DOI: 0.21046/2070-7401-2022-19-3-217-232.
- Ponomarev E. I., Kharuk V. I., Yakimov N. D., Current results and perspectives of wildfire satellite monitoring in Siberia, Sibirskii lesnoi zhurnal, 2017, No. 5, pp. 25–36 (in Russian), DOI: 10.15372/SJFS20170503.
- Ponomarev E. I., Kharuk V. I., Shvetsov E. G., Monitoring of natural fires in Siberia: dynamics of combustion in the modern climate, spatiotemporal patterns, characteristics and forecasts, Krasnoyarsk: Siberian Federal University, 2019, 220 p. (in Russian).
- Bobbe T., Descloitres J., Finco M. et al., MODIS Land Rapid Response System: implementation with USDA Forest Service and implications for active fire detection and land cover change products from future moderate resolution sensors, NPOESS MAXI Review, Silver Spring, MD, 2002.
- Chuvieco E., Earth Observation of Global Change, 2008, DOI: 10.1007/978-1-4020-6358-9_6.
- Freeborn P. H., Wooster M. J., Roberts G., Xu W. D., Evaluating the SEVIRI fire thermal anomaly detection algorithm across the Central African Republic using the MODIS active fire product, Remote Sensing, 2014, Vol. 6, pp. 1890–1917, DOI: 10.3390/rs6031890.
- Giglio L., Descloitresa J., Justice C. O., Kaufman Y. J., An Enhanced Contextual Fire Detection Algorithm for MODIS, Remote Sensing of Environment, 2003, Vol. 87, pp. 273–282, DOI: 10.1016/S0034-4257(03)00184-6.
- Giglio L., Schroeder W., Justice C. O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sensing of Environment, 2016, Vol. 178, Issue 1, pp. 31–41, DOI: 10.1016/j.rse.2016.02.054.
- Giglio L., Schroeder W., Hall J. V., Justice C. O., MODIS Collection 6 Active Fire Product User’s Guide. Revision B, University of Maryland, Department of Geographical Sciences, 2018, pp. 1–62.
- Giglio L., Schroeder W., Hall J. V., Justice C. O., MODIS Collection 6 Active Fire Product User’s Guide Revision C, University of Maryland, Department of Geographical Sciences, 2020, pp. 1–63.
- Ichoku C., Kaufman Y. J., A Method to Derive Smoke Emission Rates from MODIS Fire Radiative Energy Measurements, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43, No. 11, DOI: 10.1109/TGRS.2005.857328.
- Justice C. O., Giglio L., Korontzi S. et al., The MODIS fire products, Remote Sensing of Environment, 2002, Vol. 83, Issues 1–2, pp. 244–262, DOI: 10.1016/S0034-4257(02)00076-7.
- Kaufman Y. J., Justice C. O., MODIS ATBD: Fire Products, Version 2.2, EOSID#2741, 1998, 77 p.
- Lee H., Won J.-S., Park W., An Atmospheric Correction Using High Resolution Numerical Weather Prediction Models for Satellite-Borne Single-Channel Mid-Wavelength and Thermal Infrared Imaging Sensors, Remote Sensing, 2020, Vol. 12, Issue 853, DOI: 10.3390/rs12050853.
- McCarty J. L., Justice C. O., Korontzi S., Agricultural burning in the Southeastern United States detected by MODIS, Remote Sensing of Environment, 2007, Vol. 108, pp. 151–162, DOI: 10.1016/j.rse.2006.03.020.
- Mollicone D., Eva H. D., Achard F., Nature Human role in Russian wild fires, Nature, 2006, Vol. 440, pp. 436–437, DOI: 10.1038/440436a.
- Peterson D. A., Hyer E. J., Campbell J. R. et al., The 2013 Rim Fire: Implications for predicting extreme fire spread, pyroconvection, and smoke emissions, Bull. American Meteorological Society, 2014, Vol. 96, Issue 2, pp. 229–247, DOI: 10.1175/bams-d-14-00060.1.
- Polehampton E., Cox C., Smith D. et al., Copernicus Sentinel-3 SLSTR Land User Handbook, 2023, Ref. OMPC.ACR.HBK.002, 64 p.
- Vadrevu K. P., Ellicott E., Giglio L. et al., Vegetation fires in the himalayan region — aerosol load, black carbon emissions and smoke plume heights, Atmospheric Environment, 2012, Vol. 47, pp. 241–251, DOI: 10.1016/j.atmosenv.2011.11.009.
- Wooster M. J., Roberts G., Perry G. L.W., Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophysical Research, 2005, Vol. 110, Issue D24, DOI: 10.1029/2005JD006318.
- Zhao C., Chen S., Leung L. R. et al., Uncertainty in modeling dust mass balance and radiative forcing from size parameterization, Atmospheric Chemistry and Physics, 2013, Vol. 13, Issue 21, pp. 10733–10753, DOI: 10.5194/acp-13-10733-2013.