ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 325-339

New 1.38 µm water vapor band spectroscopy for the CO2 atmosphere: H2O measurements in the Martian atmosphere in the SPICAM/MEX and ACS NIR/TGO experiments

A.A. Fedorova 1 , A.Yu. Trokhimovskiy 1 , T.M. Petrova 2 , V.M. Deichuli 2 , A.M. Solodov 2 , A.A. Solodov 2 , F. Montmessin 3 , O.I. Korablev 1 
1 Space Research Institute RAS, Moscow, Russia
2 V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia
3 Laboratoire atmosphères, milieux, observations spatiales (LATMOS), Guyancourt, France
Accepted: 29.12.2023
DOI: 10.21046/2070-7401-2024-21-1-325-339
The H2O 1.38 µm band has been used to measure water vapor in the Martian atmosphere since the MAWD (Mars Atmospheric Water Detector) experiment on Viking-1, -2. Currently, two experiments in orbit around Mars — SPICAM IR (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars InfraRed) on Mars-Express and ACS NIR (Atmospheric Chemistry Suite Near InfraRed) on Trace Gas Orbiter — are measuring water vapor in this spectral range. The spectrometers provide monitoring of the seasonal cycle of the column water vapor abundance and its vertical distribution over several Martian years. The HITRAN (High Resolution Transmission) database was used as a spectroscopic information for water vapor retrievals in these experiments. To take into account the broadening of water vapor lines in the carbon dioxide atmosphere of Mars, a scaling factor of 1,7 was adopted relative to the broadening by air, presented in HITRAN. This could lead to systematic uncertainty in the results, even despite the low pressure in the Martian atmosphere. Recent laboratory measurements of the broadening of water vapor lines in CO2 for the lines of three vibrational bands ν1 + ν3, 2ν2 + ν3 and 2ν1 in the spectral region 6760–7430 cm–1 have improved the spectroscopic parameters for the carbon dioxide atmosphere. We performed water vapor retrievals with new spectroscopy at 1.38 μm for SPICAM IR nadir measurements and ACS NIR occultation measurements. In the case of SPICAM IR, changes due to spectroscopy were below the sensitivity of the instrument due to the low resolution and signal-to-noise ratio. For the ACS NIR, which is a high resolution spectrometer, the new spectroscopy resulted in systematic deviations of 2–5 % depending on the height in the atmosphere, exceeding the random errors of the instrument.
Keywords: Mars, atmosphere, water vapor, spectroscopic measurements
Full text

References:

  1. Brown L. R., Humphrey C. M., Gamache R. R., CO2-broadened water in the pure rotation and ν2 fundamental regions, J. Molecular Spectroscopy, 2007, Vol. 246, pp. 1–21, DOI: 10.1016/j.jms.2007.07.010.
  2. Chesnokova T. Y., Chentsov A. V., Firsov K. M., Impact of spectroscopic information on total column water vapor retrieval in the near-infrared spectral region, J. Applied Remote Sensing, 2020, Vol. 14, Article 034510, DOI: 10.1117/1.JRS.14.034510.
  3. Conway E. K., Gordon I. E., Kyuberis A. A. et al., Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN 2016 database, J. Quantitative Spectroscopy and Radiative Transfer, 2020, Vol. 241, Article 106711, DOI: 10.1016/j.jqsrt.2019.106711.
  4. Deichuli V. M., Petrova T. M., Solodov A. M. et al., Water vapor absorption line parameters in the 6760–7430 cm–1 region for application to CO2-rich planetary atmosphere, J. Quantitative Spectroscopy and Radiative Transfer, 2022, Vol. 293, Article 108386, DOI: 10.1016/j.jqsrt.2022.108386.
  5. Farmer C. B., Davies D. W., Holland A. L. et al., Mars: Water vapor observations from the Viking orbiters, J. Geophysical Research, 1977, Vol. 82, pp. 4225–4248, DOI: 10.1029/JS082i028p04225.
  6. Fedorova A. A., Rodin A. V., Baklanova I. V., MAWD observations revisited: seasonal behavior of water vapor in the Martian atmosphere, Icarus, 2004, Vol. 17, pp. 54–67, DOI: 10.1016/j.icarus.2004.04.017.
  7. Fedorova A., Korablev O., Bertaux J.-L. et al., Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions, J. Geophysical Research: Planets, 2006, Vol. 111, Article E09S08, DOI: 10.1029/2006je002695.
  8. Fedorova A. A., Korablev O. I., Bertaux J. L. et al., Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol, Icarus, 2009, Vol. 200, pp. 96–117, DOI: 10.1016/j.icarus.2008.11.006.
  9. Fedorova A. A., Trokhimovsky S., Korablev O., Montmessin F., Viking observation of water vapor on Mars: Revision from up-to-date spectroscopy and atmospheric models, Icarus, 2010, Vol. 208, pp. 156–164, DOI: 10.1016/j.icarus.2010.01.018.
  10. Fedorova A. A., Montmessin F., Korablev O. et al., Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season, Science, 2020, Vol. 367, pp. 297–300, DOI: 10.1126/science.aay9522.
  11. Fedorova A., Montmessin F., Korablev O. et al., Multi-Annual Monitoring of the Water Vapor Vertical Distribution on Mars by SPICAM on Mars-Express, J. Geophysical Research: Planets, 2021, Vol. 126, Article e2020JE006616, DOI: 10.1029/2020JE006616.
  12. Fedorova A., Montmessin F., Trokhimovskiy A. et al., A Two-Martian Years Survey of the Water Vapor Saturation State on Mars Based on ACS NIR/TGO Occultations, J. Geophysical Research: Planets, 2023, Vol. 128, Article e2022JE007348, DOI: 10.1029/2022JE007348.
  13. Fiorenza C., Formisano V., A solar spectrum for PFS data analysis, Planetary and Space Science, 2005, Vol. 53, pp. 1009–1016, DOI: 10.1016/j.pss.2004.12.008.
  14. Gamache R. R., Neshyba S. P., Plateaux J. J. et al., CO2-Broadening of Water-Vapor Lines, J. Molecular Spectroscopy, 1995, Vol. 170, pp. 131–151, DOI: 10.1006/jmsp.1995.1060.
  15. Gamache R. R., Farese M., Renaud C. L., A spectral line list for water isotopologues in the 1100–4100 cm−1 region for application to CO2-rich planetary atmospheres, J. Molecular Spectroscopy, 2016, Vol. 326, pp. 144–150, DOI: 10.1016/j.jms.2015.09.001.
  16. Gordon I. E., Rothman L. S., Hill C. et al., The HITRAN 2016 molecular spectroscopic database, J. Quantitative Spectroscopy and Radiative Transfer, 2017, Vol. 203, pp. 3–69, DOI: 10.1016/j.jqsrt.2017.06.038.
  17. Gordon I. E., Rothman L. S., Hargreaves R. J. et al., The HITRAN 2020 molecular spectroscopic database, J. Quantitative Spectroscopy and Radiative Transfer, 2022, Vol. 277, Article 107949, DOI: 10.1016/j.jqsrt.2021.107949.
  18. Jakosky B. M., Farmer C. B., The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment, J. Geophysical Research: Solid Earth, 1982, Vol. 87, pp. 2999–3019, DOI: 10.1029/JB087iB04p02999.
  19. Knutsen E. W., Montmessin F., Verdier L. et al., Water Vapor on Mars: A Refined Climatology and Constraints on the Near-Surface Concentration Enabled by Synergistic Retrievals, J. Geophysical Research: Planets, 2022, Vol. 127, Article e2022JE007252, DOI: 10.1029/2022JE007252.
  20. Korablev O. I., Bertaux J. L., Kalinnikov Y. K. et al., Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR, Cosmic Research, 2006, Vol. 44, pp. 278–293, DOI: 10.1134/s0010952506040022.
  21. Korablev O. I., Montmessin F., Trokhimovskiy A. et al., The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter, Space Science Reviews, 2018, Vol. 214, Article 7, DOI: 10.1007/s11214-017-0437-6.
  22. Langlois S., Birbeck T. P., Hanson R. K., Temperature-Dependent Collision-Broadening Parameters of H2O Lines in the 1.4-μm Region Using Diode Laser Absorption Spectroscopy, J. Molecular Spectroscopy, 1994, Vol. 167, pp. 272–281, DOI: 10.1006/jmsp.1994.1234.
  23. Lavrentieva N. N., Voronin B. A., Fedorova A. A., H216O line list for the study of atmospheres of Venus and Mars, Optics and Spectroscopy, 2015, Vol. 118, pp. 11–18, DOI: 10.1134/s0030400x15010178.
  24. Mikhailenko S., Kassi S., Mondelain D., Campargue A., Water vapor absorption between 5690 and 8340 cm−1: accurate empirical line centers and validation tests of calculated line intensities, J. Quantitative Spectroscopy and Radiative Transfer, 2020, Vol. 245, Article 106840. DOI: 10.1016/j.jqsrt.2020.106840.
  25. Millour E., Forget F., Spiga A. et al., The Mars Climate Database (Version  6.1), Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep. 2022, Vol. 16, Article EPSC2022-786, https://doi.org/10.5194/epsc2022-786, 2022.
  26. Montmessin F., Korablev O., Lefèvre F. et al., SPICAM on Mars-Express: A 10 year in-depth survey of the Martian atmosphere, Icarus, 2017, Vol. 297, pp. 195–216, https://doi.org/10.1016/j.icarus.2017.06.022.
  27. Pollack J. B., Dalton J. B., Grinspoon D. et al., Near-Infrared Light from Venus’ Nightside: A Spectroscopic Analysis, Icarus, 1993, Vol. 103, pp. 1–42, DOI: 10.1006/icar.1993.1055.
  28. Régalia L., Cousin E., Gamache R. R. et al., Laboratory measurements and calculations of line shape parameters of the H2O–CO2 collision system, J. Quantitative Spectroscopy and Radiative Transfer, 2019, Vol. 231, pp. 126–135, DOI: 10.1016/j.jqsrt.2019.04.012.
  29. Rothman L. S., Barbe A., Chris Benner D. et al., The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quantitative Spectroscopy and Radiative Transfer, 2003, Vol. 82, pp. 5–44, DOI: 10.1016/S0022-4073(03)00146-8.
  30. Rothman L. S., Jacquemart D., Barbe A. et al., The HITRAN 2004 molecular spectroscopic database, J. Quantitative Spectroscopy and Radiative Transfer, 2005, Vol. 96, pp. 139–204, DOI: 10.1016/j.jqsrt.2004.10.008.
  31. Rothman L. S., Gordon I. E., Babikov Y. et al., The HITRAN 2012 molecular spectroscopic database, J. Quantitative Spectroscopy and Radiative Transfer, 2013, Vol. 130, pp. 4–50, DOI: 10.1016/j.jqsrt.2013.07.002.
  32. Tran H., Ngo N. H., Hartmann J.-M., Efficient computation of some speed-dependent isolated line profiles, J. Quantitative Spectroscopy and Radiative Transfer, 2013, Vol. 129, pp. 199–203, DOI: 10.1016/j.jqsrt.2013.06.015.
  33. Trokhimovskiy A., Fedorova A., Korablev O. et al. (2015a), Mars’ water vapor mapping by the SPICAM IR spectrometer: Five Martian years of observations, Icarus, 2015, Vol. 251, pp. 50–64, DOI: 10.1016/j.icarus.2014.10.007.
  34. Trokhimovskiy A., Korablev O., Kalinnikov Y. K. et al. (2015b), Near-infrared echelle-AOTF spectrometer ACS-NIR for the ExoMars Trace Gas Orbiter, Infrared Remote Sensing and Instrumentation XXIII: Proc. SPIE, 2015, Vol. 9608, Article 960809, DOI: 10.1117/12.2190369.