Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 286-298
Mesoscale eddies in the South Pacific Ocean
V.S. Travkin
1, 2 , T.V. Belonenko
1 , A.V. Kochnev
3 , V.N. Feoktistova
1 1 Saint Petersburg State University, Saint Petersburg, Russia
2 N. N. Zubov’s State Oceanographic Institute, Moscow, Russia
3 Northern (Arctic) Federal University, Arkhangelsk, Russia
Accepted: 19.12.2023
DOI: 10.21046/2070-7401-2024-21-1-286-298
The paper analyzes the properties and trajectories of mesoscale eddies in the South Pacific Ocean. The study region is the area adjacent to the coast of South America: 20–50° S, 70–120° W. Two types of data are used for the analysis: Atlas of mesoscale eddy trajectories META3.2 DT created on the basis of satellite altimetry information, and GLORYS12V1 reanalysis of the World Ocean, which is used to construct average current fields and thermohaline characteristics. It has been established that the maximum number of mesoscale eddies is formed in the coastal zone, on the slopes of the Peruvian and Chilean trenches. The average values of the number of eddies per one 1×1° cell (in latitude and longitude) are calculated and the spatial distribution of this characteristic as well as eddy and average kinetic energy in the region are described. There is a meridional displacement of eddies as they move west: cyclones to the South Pole, anticyclones to the equator. Diagrams of average values of eddy characteristics show that most vortices have radii of 50–75 km, amplitudes exceeding 5 cm, orbital velocities of 5–15 cm/s and a lifetime not exceeding 50 days. The features of long-lived mesoscale eddies with lifetimes exceeding 1 and 2 years are analyzed.
Keywords: mesoscale eddies, South Pacific, altimetry, cyclones, anticyclones, META3.2 DT
Full textReferences:
- Anikeev V. G., Gerber E. M., Current state of the mackerel fishery Trachurus murphyi in the South Pacific Ocean, Trudy AtlantNIRO, 2018, Vol. 2, No. 2, pp. 84–101 (in Russian).
- Belonenko T. V., Bashmachnikov I. L., Koldunov A. V., Kuibin P. A., On the vertical component of velocity in the Lofoten mesoscale eddy of the Norwegian Sea. Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2017, Vol. 53, No. 6, pp. 728–737 (in Russian), DOI: 10.7868/S0003351517060071.
- Borodin E. V., Churin D. A., Chernyshkov P. P., The influence of water dynamics on the biomass and distribution of biological resources of the pelagic zone of the southern parts of the Atlantic and Pacific oceans. Vestnik Baltiiskogo federal’nogo universiteta imeni I. Kanta, 2014, Vol. 7, pp. 142–154 (in Russian).
- Glubokov A. I., Popova N. R., Glubokovsky M. K., Commercial pelagic fish of the south-eastern part of the Pacific Ocean: international regulation of fisheries and the state of stocks, Trudy VNIRO, 2018, Vol. 174, pp. 21–29 (in Russian).
- Gnevyshev V. G., Frolova A. V., Kubryakov A. A. et al., Interaction between Rossby Waves and a Jet Flow: Basic Equations and Verification for the Antarctic Circumpolar Current, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 5, pp. 412–422, DOI: 10.1134/S0001433819050074.
- Gnevyshev V. G., Frolova A. V., Koldunov A. V., Belonenko T. V., Topographic effect for Rossby waves on zonal shear flow, Fundamental’naya i prikladnaya gidrofizika, 2021, Vol. 14, No. 1, pp. 4−14 (in Russian), DOI: 10.7868/S2073667321010019.
- Gordeeva S. M., Zharova A. D., Operational assessment of the fishing situation in the south-eastern part of the Pacific Ocean, Uchenye zapiski RGGMU, 2016, No. 44, pp. 96–103 (in Russian).
- Dubishchuk M. M., Features of fishing and biological condition of the Peruvian horse mackerel Trachurus murphyi in the open waters of the central subregion of the Southeast Pacific Ocean in August-October 2020, Trudy AtlantNIRO, 2021, Vol. 5, No. 1(11), pp. 122−135 (in Russian).
- Zyryanov V. N., Topograficheskie vikhri v dinamike morskikh techenii (Topographic eddies in the dynamics of sea currents), Moscow: IVP RAN, 1995, 339 p. (in Russian).
- Koldunov A. V., Belonenko T. V., Hydrodynamic Modeling of Vertical Velocities in the Lofoten Vortex, Izvestiya, Atmospheric and Oceanic Physics, 2020, Vol. 56, No. 5, pp. 502–511, https://doi.org/10.1134/S0001433820040040.
- Malinin V. N., Gordeeva S. M., Promyslovaya okeanologiya yugo-vostochnoi chasti Tikhogo okeana. Tom I. Izmenchivost’ faktorov sredy obitaniya (Commercial oceanology of the south-eastern part of the Pacific Ocean. Volume I. Variability of environmental factors), Saint Petersburg: Izd. RGGMU, 2009, 279 p.
- Mikaelyan A. S., Zatsepin A. G., Kubryakov A. A., Effect of Mesoscale Eddy Dynamics on Bioproductivity of the Marine Ecosystems (Review), Physical Oceanography, 2020, Vol. 27, No. 6, pp. 590–618, DOI: 10.22449/1573-160X-2020-6-590-61.
- Nezlin M. V., Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type), Soviet Physics Uspekhi, 1986, Vol. 29, pp. 807–842, DOI: 10.1070/PU1986v029n09ABEH003490.
- Belonenko T., Frolova A., Gnevyshev V., Detection of waveguide for Rossby waves using satellite altimetry in the Antarctic Circumpolar Current, Intern. J. Remote Sensing, 2020, Vol. 41, Issue 16, pp. 6232–6247, DOI: 10.1080/01431161.2020.1752955.
- Cunningham S. A., Alderson S. G., King B. A., Brandon M. A., Transport and Variability of the Antarctic Circumpolar Current in Drake Passage, J. Geophysical Research, 2003, Vol. 108, Issue C5, Article 8084, DOI: 10.1029/2001JC001147.
- Gaube P., McGillicuddy Jr. D. J., Moulin A. J., Mesoscale eddies modulate mixed layer depth globally, Geophysical Research Letters, 2019, Vol. 46, pp. 1505–1512, DOI: 10.1029/2018GL080006.
- Gnevyshev V. G., Malysheva A. A., Belonenko T. V., Koldunov A. V., On Agulhas Eddies and Rossby Waves Travelling by Forcing Effects, Russian J. Earth Sciences, 2021, Vol. 21, No. 5, Article ES5003, DOI: 10.2205/2021ES000773.
- Gnevyshev V. V., Frolova A. V., Belonenko T. V., Topographic Effect for Rossby Waves on Non-Zonal Shear Flow, Water Resources, 2022, Vol. 49, No. 2, pp. 240−248, DOI: 10.7868/S2073667321010019.
- McGillicuddy Jr. D. J., Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale, Annual Review of Marine Science, 2016, Vol. 8, pp. 125–159, DOI: 10.1146/annurev-marine-010814-015606.
- Mikaelyan A. S., Zatsepin A. G., Kubryakov A. A. et al., Case where a mesoscale cyclonic eddy suppresses primary production: A Stratification-Lock hypothesis, Progress in Oceanography, 2023, Vol. 212, Article 102984, DOI: 10.1016/j.pocean.2023.102984.
- Pegliasco C., Delepoulle A., Mason E. et al., META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry, Earth System Science Data, 2022, Vol. 14, pp. 1087–1107, DOI: 10.5194/essd-14-1087-2022.
- Seiki A., Takayabu Y. N., Yoneyama K. et al., The oceanic response to the Madden-Julian oscillation and ENSO, SOLA, 2009. Vol. 5, pp. 93–96, DOI: 10.2151/sola.2009-024.
- Yu J.-Y., Kao H.-Y., Lee T., Kim S., Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events, Theoretical Applied Climatology, 2011, Vol. 103, pp. 337–344, https://doi.org/10.1007/s00704-010-0307-6
- Wang B., Theory, In: Intraseasonal Variability in the Atmosphere-Ocean Climate System, Springer, Berlin, Heidelberg, 2005, pp. 307–360, https://doi.org/10.1007/3-540-27250-X_10.