Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 308-322
Comprehensive monitoring of Central Yamal lakes based on multispectral imaging usage
A.V. Puzanov
1 , H.J. Drost
2 , V.V. Kirillov
1 , O.V. Lovtskaya
1 , D.N. Balykin
1 , M.I. Koveshnikov
1 , O.B. Akulova
1 , K. Teshebaeva
3 , L.A. Khvorova
4 , A.V. Kulshin
4 , A.V. Kotovshchikov
1 , N.M. Kovalevskaya
1 1 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
2 National Institute for Inland Water Management, Lolystad, The Netherlands
3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
4 Altai State University, Barnaul, Russia
Accepted: 02.02.2024
DOI: 10.21046/2070-7401-2024-21-1-308-322
The work is devoted to monitoring and mapping thermokarst lakes based on multispectral satellite data. It gives a description of lakes evolution details in Central Yamal through classification and with regard to qualitative changes in the lakes over the past ten years. To analyze and interpret images in the context of qualitative characteristics of water bodies and pattern recognition, the time series (1984–2018) of multispectral Landsat satellite images of Bovanenkovo region (Central Yamal training area) is used. It appeared that Yamal is characterized by permanently silty lakes (hyper-silty lakes, silty lakes, moderately silty lakes) and intermittently silty lakes (silty lakes with hyper-silty pulses, moderately silty lakes with silt pulses, almost silt-free lakes with silt pulses). Field data and Sentinel-2 images (2018–2019) are employed to derive water quality parameters and inherent optical properties. Our findings suggest that total suspended matter concentration is a major characteristic of Yamal thermokarst lakes (lake classes distinguishable in multispectral images by reflectance also differ in ranges of total suspended matter concentration). An additional result is that main scatterers (sources of “white particles”) of thermokarst lakes in Central Yamal are silts, clays and minerals, which increase water reflectivity due to high scattering and relatively low absorption. In order to obtain comprehensive results, including all possible ranges of water parameters, the creation of a specific Arctic bio-optical database is required.
Keywords: thermokarst lakes, Yamal, Landsat, image analysis and interpretation, Sentinel-2, water processors
Full textReferences:
- Veremeyeva A. A., Formirovanie i sovremennaya dinamika ozerno-termokarstovogo rel’efa tundrovoi zony Kolymskoi nizmennosti po dannym sputnikovoi s″emki: Diss. kand. geogr. nauk (Formation and modern dynamics of lacustrine-thermokarst topography of the tundra zone of the Kolyma Lowland according to satellite imaging data, Cand. geogr. sci. thesis), Pushchino, 2017, 134 p. (in Russian).
- Kirpotin S. N., Polishchuk Yu. M., Bryksina N. A., Dynamics of areas of thermokarst lakes in continuous and discontinuous cryozones of Siberia under global warming, Vestnik Tomskogo gosudarstvennogo universiteta, 2008, No. 311, pp. 185–189 (in Russian).
- Kravtsova V. I., Bystrova A. G., Changes in the size of thermokarst lakes in various regions of Russia over the past 30 years, Kriosfera Zemli, 2009, Vol. 13, No. 2, pp. 16–26 (in Russian).
- Kudryavtsev V. A., About thermokarst, In: Voprosy fizicheskoi geografii polyarnykh stran, Vyp. 1, Moscow: MGU, 1959, pp. 101–106 (in Russian).
- Marr D., Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, Cambridge: MIT Press, 1982, 400 p.
- Solov’yev P. A., Alasnyi termokarstovyi rel’ef Tsentral’noi Yakutii: Putevoditel’ (Alas thermokarst relief of Central Yakutia: Guide), Yakutsk: Knizhnoe izdatel’stvo, 1973, 47 p. (in Russian).
- Tomirdiaro C. B., Physics of lake thermokarst in the polar lowlands and Antarctica and cryogenic processing of soils, Kolyma, 1965, No. 7, pp. 30–34, No. 8, pp. 36–40, No. 10 (in Russian).
- Tomirdiaro C. B., Evolution of lacustrine thermokarst landscapes on the plains of Eastern Siberia and the dynamics of underground glaciation, In: Paleogeograficheskie aspekty izmeneniya prirodnykh uslovii Sibiri i Dalnego Vostoka, Novosibirsk, 1969, pp. 65–67 (in Russian).
- Tomirdiaro C. B., Ryabchun V. K., Lake thermokarst in the Lower Anadyr Lowland, Doklady 2-i Mezhdunarodnoi konferentsii po merzlotovedeniyu (Proc. 2nd Intern. Conf. Permafrost Science), Yakutsk, 1973, pp. 58–67 (in Russian).
- Andresen C. G., Lougheed V. L., Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65-year period (1948–2013), J. Geophysical Research: Biogeosciences, 2015, Vol. 120, pp. 466–479, DOI: 10.1002/2014JG002778.
- Baraldi A., Pre-processing, classification and semantic querying of large-scale Earth observation spaceborne/airborne/terrestrial image databases: Process and product innovations: Doctoral Thesis, Naples, 2017, 519 p., DOI: 10.13140/RG.2.2.25510.52808.
- Billings W. D., Peterson K. M., Vegetational change and ice-wedge polygons through the thaw-lake cycle in arctic Alaska, Arctic and Alpine Research, 1980, Vol. 12, No. 4, pp. 413–432.
- Brockmann C., Doerffer R., Peters M., Kerstin S., Embacher S., Ruescas A., Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters, Proc. Living Planet Symp., 9–13 May 2016, Prague, Czech Republic, L. Ouwehand (ed.), ESA Special Publication, 2016, Vol. 740, pp. 54–60.
- Brumberger H., Stein R. S., Powell R., Angular patterns of scattered intensity for three basic particle sizes, Light Scattering, Science and Technology, 1968, November, pp. 38–42.
- Cabot E. C., The northern Alaskan coastal plain interpreted from aerial photographs, Geographical Review, 1947, Vol. 37, No. 4, pp. 639–648, DOI: 10.2307/211190.
- Carroll M. L., Townshend J. R. G., DiMiceli C. M. et al., Shrinking lakes of the Arctic: Spatial relationships and trajectory of change, Geophysical Research Letters, 2011, Vol. 38(20), DOI: 10.1029/2011GL049427.
- Chebud Y., Naja G., Rivero R., Melesse A., Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network, Water, Air, and Soil Pollution, 2012, Vol. 223, pp. 4875–4887.
- Doeffer R., Schiller H., The MERIS Case 2 water algorithm, Intern. J. Remote Sensing, 2007, Vol. 28, pp. 517–535, DOI: 10.1080/01431160600821127.
- Doxaran D., Froidefond J.-M., Castaing P., Remote-Sensing Reflectance of Turbid Sediment-Dominated Waters. Reduction of Sediment Type Variations and Changing Illumination Conditions Effects by Use of Reflectance Ratios, Applied Optics, 2003, Vol. 42(15), pp. 2623–2634, DOI: 10.1364/AO.42.002623.
- Hinkel K. M., Eisner W. R., Bockheim J. G. et al., Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska, Arctic, Antarctic, and Alpine Research, 2003, Vol. 35(3), pp. 291–300, DOI: 10.1657/1523-0430(2003)035[0291:SEAACS]2.0.CO;2.
- Hopkins D., Thaw lakes and thaw sinks in the Imuruk Lake area, Seward Peninsula, Alaska, J. Geology, 1949, Vol. 57, No. 2, pp. 119–131, DOI: 10.1086/625591.
- Jones B., Grosse G., Arp C. et al., Modern Thermokarst Lake Dynamics in the Continuous Permafrost Zone, Northern Seward Peninsula, Alaska, J. Geophysical Research: Biogeosciences, 2011, Vol. 116, Article G00M03, DOI: 10.1029/2011jg001666.
- Kondratyev K. Ya., Pozdnyakov D. V., Pettersson L. H., Water quality remote sensing in the visible spectrum, Intern. J. Remote Sensing, 1998, Vol. 19, No. 5, pp. 957–979, DOI: 10.1080/014311698215810.
- Kratzer S., Kyryliuk D., Brockmann C., Inorganic suspended matter as an indicator of terrestrial influence in Baltic Sea coastal areas — Algorithm development and validation, and ecological relevance, Remote Sensing of Environment, 2020, Vol. 237, Article 111609, DOI: 10.1016/j.rse.2019.111609.
- Morel A., Prieur L., Analysis of variations in ocean color, Limnology and Oceanography, 1977, Vol. 22, No. 4, pp. 709–722, DOI: 10.4319/lo.1977.22.4.0709.
- Mueller J. L., Austin R. W., Ocean optics protocols for SeaWiFS validation, revision 1, Oceanographic Literature Review, Vol. 42, No. 9, p. 805.
- Olthof I., Fraser R. H., Schmitt C., Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985, Remote Sensing of Environment, 2015, Vol. 168, pp. 194–204, DOI: 10.1016/j.rse.2015.07.001.
- Pestryakova L. A., Herzschuh U., Wetterich S., Ulrich M., Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records, Quaternary Science Reviews, 2012, Vol. 51, pp. 56–70, DOI: 10.1016/j.quascirev.2012.06.020.
- Plug L. J., Walls C., Scott B. M., Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic, Geophysical Research Letters, 2008, Vol. 35, Issue 3, Article L03502, DOI: 10.1029/2007GL032303.
- Ray R. G., Aerial photographs in geologic interpretation and mapping, Report USGS Numbered Series, U. S. Govt. Print. Off, 1960, 230 p., DOI: 10.3133/pp373.
- Riordan B., Verbyla D., McGuire A. D., Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images, J. Geophysical Research, 2006, Vol. 111, Article G04002, DOI: 10.1029/2005JG000150, 2006 /2005JG000150.
- Roy-Léveillée P., Permafrost and thermokarst lake dynamics in the Old Crow Flats, northern Yukon, Canada: Doctoral Thesis, Ottawa, Canada: Carleton University, 2014, 224 p., DOI: 10.13140/RG.2.1.1542.1527.
- Schiller H., Doerffer R., Neural network for emulation of an inverse model — operational derivation of case II water properties from MERIS data, Intern. J. Remote Sensing, 1999, Vol. 20, No. 9, pp. 1735–1746.
- Smith L. C., Sheng Y., MacDonald G. M., Hinzman L. D., Disappearing Arctic lakes, Science, 2005, Vol. 308(5727), Article 1429, DOI: 10.1126/science.1108142.
- Xing Q., Lou M., Chen C., Shi P., Using in situ and Satellite Hyperspectral Data to Estimate the Surface Suspended Sediments Concentrations in the Pearl River Estuary, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2013, Vol. 6(2), pp. 731–738, DOI: 10.1109/JSTARS.2013.2238659.