ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 31-50

Determining mixed forest species composition based on joint processing of public satellite maps and multi-temporal Sentinel-2 images

E.V. Dmitriev 1, 2 , T.V. Kondranin 2 , P.G. Melnik 3 , S.A. Donskoi 4 
1 Marchuk Institute of Numerical Mathematics RAS, Moscow, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
3 Mytischi Branch of Bauman Moscow State Technical University, Moscow region, Mytischi, Russia
4 Roslesinforg, Moscow, Russia
Accepted: 21.11.2023
DOI: 10.21046/2070-7401-2024-21-1-31-50
The problem of determining species composition of mixed forests for the European part of Russia is considered. The method proposed is based on joint processing of multi-temporal multispectral images of medium spatial resolution (Sentinel-2) and very high spatial resolution satellite images obtained from open mapping services such as Bing Maps, Google Maps, etc. The main stages of thematic processing are segmentation of forest stands using textural features and pixel-by-pixel classification of tree species using spectral-temporal features. The textural segmentation method is based on a combined use of statistical and spectral methods for extracting texture features that allows reducing the negative impact of noise characteristic of satellite maps. The results of forest stand segmentation in a test area (the territory of Bronnitsky forestry, Moscow region) revealed that the total probability error does not exceed 3.5 % with a natural error level due to boundary pixels of 0.6 %. Accuracies of determining species composition using both vegetation indices and directly data from satellite spectral channels are analyzed. The processing results in the second case demonstrate significantly higher reliability. Classification errors for individual species obtained by using the cross-validation method vary from 1 to 8 %. Comparison with terrestrial forest inventory data shows the coincidence of the dominant species for 87 % of the total area of forest inventory plots in the test area.
Keywords: remote sensing, pattern recognition, thematic processing, texture features, multitemporal multispectral satellite images, species composition of forest stands
Full text

References:

  1. Bartalev S. A., Loupian E. A., R&D on methods for satellite monitoring of vegetation by the Russian Academy of Sciences’ Space Research Institute, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 197–214 (in Russian).
  2. Bartalev S., Egorov V., Zharko V. et al., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian)
  3. Belova E. I., Ershov D. V., Assessing reforestation on clear cuts based on Landsat time series, Lesovedenie, 2015, No. 5, pp. 339–345 (in Russian).
  4. Gavrilyuk E. A., Ershov D. V., Thematic mapping of forest species structure based on Landsat-TM\ETM+ satellite images, Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii i lesnom khozyaistve: doklady 5-i Vserossiiskoi konferentsii (Aerospace Method and GIS-Technologies in Forestry and Forest Management, Proc. 5th All-Russian Conf.), Moscow, Apr. 22–24, 2013, Moscow: CEPL RAS, 2013, pp. 112–115 (in Russian).
  5. Gafferberg I. G., Phenological calendar of the main woody plant species and some associated animals in the Mordovia state nature reserve. 1945, Trudy Mordovskogo gosudarstvennogo prirodnogo zapovednika imeni P. G. Smidovicha, 2020, No. 25, pp. 50–96 (in Russian).
  6. Elagin I. N., Vremena goda v lesakh Rossii (Seasons year in Russian forests), Novosibirsk: All-Russian Inc. “Nauka”, Sib. Publ. Firm, 1993, 272 p. (in Russian).
  7. Zharko V. O., Bartalev S. A., Forest tree species recognizability assessment based on satellite data on their spectral reflectance seasonal changes, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 159–170 (in Russian).
  8. Zamolodchikov D. G., Kobyakov K. N., Kokorin A. O., Aleinikov A. A., Shmatkov N. M., Les i klimat (Forest and climate), Moscow: World Wildlife Fund (WWF), 2015, 40 p. (in Russian).
  9. Miklashevich T. S., Bartalev S. A., Plotnikov D. E., Interpolation algorithm for the recovery of long satellite data time series of vegetation cover observation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 143–154 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-143-154.
  10. Miklashevich T. S., Bartalev S. A., Egorov V. A., Method of phenological combination of long-term series of satellite observations based on high time resolution data, Materialy 20-i Mezhdunarodnoi konferentsii ”Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 20th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow: IKI RAS, 2022, p. 319 (in Russian), DOI: 10.21046/20DZZconf-2022a.
  11. Sezonnaya zhizn’ prirody Russkoi ravniny. Kalendari prirody Nechernozemnoi zony RSFSR za 19601972 gg. (Seasonal life of nature on the Russian Plain. Nature calendars of the Non-Black Earth Zone of the RSFSR for 1960–1972), Tavrovskii V. A. (ed.), Leningrad: Nauka, 1979, 163 p. (in Russian).
  12. Semkin B. I., On the relation between mean values of two measures of inclusion and measures of similarity, Byulleten’ Botanicheskogo Sada-Instituta DVO RAN, 2009, Vol. 3, pp. 91–101 (in Russian).
  13. Sochilova E. N., Yershov D. V., Possibility analysis of stem volume of forests assessment using Landsat ETM, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 277–282 (in Russian).
  14. Al-Janobi A., Performance evaluation of cross-diagonal texture matrix method of texture analysis, Pattern Recognition, 2001, Vol. 34, No. 1, pp. 171–180, https://doi.org/10.1016/s0031-3203(99)00206-x.
  15. Astola H., Hame T., Sirro L. et al., Comparison of Sentinel-2 and Landsat-8 imagery for forest variable prediction in boreal region, Remote Sensing of Environment, 2019, Vol. 223, pp. 257–273, https://doi.org/10.1016/j.rse.2019.01.019.
  16. Banskota A., Kayastha N., Falkowski M. J. et al., Forest monitoring using Landsat time series data: A review, Canadian J. Remote Sensing, 2014, Vol. 40, No. 5, pp. 362–384, https://doi.org/10.1080/07038992.2014.987376.
  17. Barnes E. M., Clarke T. R., Richards S. E. et al., Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data, Proc. 5th Intern. Conf. Precision Agriculture, Bloomington, MN, USA, 2000, Vol. 1619, 15 p.
  18. Bartalev S. A., Belward A. S., Erchov D. V., Isaev A. S., A new SPOT4-Vegetation derived land cover map of Northern Eurasia, Intern. J. Remote Sensing, 2003, Vol. 24, No. 9, pp. 1977–1982, https://doi.org/10.1080/0143116031000066297.
  19. Bonan G. B., Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 2008, Vol. 320, No. 5882, pp. 1444–1449, https://doi.org/10.1126/science.1155121.
  20. Clark M. L., Comparison of multi-seasonal Landsat-8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California, ISPRS J. Photogrammetry and Remote Sensing, 2020, Vol. 159, pp. 26–40, https://doi.org/10.1016/j.isprsjprs.2019.11.007.
  21. Dietterich T. G., Bakiri G., Solving Multiclass Learning Problems via Error-Correcting Output Codes, J. Artificial Intelligence Research, 1995, No. 2, pp. 263–286, https://doi.org/10.1613/jair.105.
  22. Dmitriev E. V., Classification of the Forest Cover of Tver’ Region Using Hyperspectral Airborne Imagery, Izvestiya, Atmospheric and Oceanic Physics, 2014, Vol. 50, No. 9, pp. 929–942, https://doi.org/10.1134/s0001433814090072.
  23. Dmitriev E. V., Kondranin T. V., Zotov S. A., Segmentation of Natural and Anthropogenic Objects by Panchromatic Satellite Images Using Statistical Textural Features, Optoelectronics, Instrumentation and Data Processing, 2022, Vol. 58, No. 2, pp. 167–179, https://doi.org/10.3103/s8756699022020029.
  24. Effiom A. E., van Leeuwen L. M., Nyktas P. et al., Combining unmanned aerial vehicle and multispectral Pleiades data for tree species identification, a prerequisite for accurate carbon estimation, J. Applied Remote Sensing, 2019, Vol. 13, No. 3, Article 034530, https://doi.org/10.1117/1.jrs.13.034530.
  25. Galloway M. M., Texture analysis using gray level run lengths, Computer Graphics and Image Processing, 1975, Vol. 4, No. 2, pp. 172–179, https://doi.org/10.1016/s0146-664x(75)80008-6.
  26. Gitelson A., Merzlyak M., Chivkunova O., Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves, Photochemistry and Photobiology, 2001, Vol. 71, pp. 38–45, https://doi.org/10.1562/0031-8655(2001)0740038opaneo2.0.co2.
  27. Gitelson A. A., Zur Y., Chivkunova O. B., Merzlyak M. N., Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochemistry and Photobiology, 2002, Vol. 75, No. 3, pp. 272–281, https://doi.org/10.1562/0031-8655(2002)0750272accipl2.0.co2.
  28. Gitelson A. A., Vina A., Ciganda V. et al., Remote estimation of canopy chlorophyll content in crops, Geophysical Research Letters, 2005, Vol. 32, No. 8, Article L08403, DOI: 10.1029/2005GL022688.
  29. Grabska E., Hostert P., Pflugmacher D., Ostapowicz K., Forest stand species mapping using the Sentinel-2 time series, Remote Sensing, 2019, Vol. 11, No. 10, Article 1197, https://doi.org/10.3390/rs11101197.
  30. Haralick R. M., Shanmugam K., Dinstein I. H., Textural features for image classification, IEEE Trans. Systems, Man, and Cybernetics, 1973, No. 6, pp. 610–621, https://doi.org/10.1109/tsmc.1973.4309314.
  31. Hastie T., Tibshirani R., Friedman J. H., The elements of statistical learning: data mining, inference, and prediction, 2nd ed., New York: Springer, 2009, 745 p., DOI: 10.1007/978-0-387-84858-7.
  32. Isaacson B. N., Serbin S. P., Townsend P. A., Detection of relative differences in phenology of forest species using Landsat and MODIS, Landscape Ecology, 2012, Vol. 27, pp. 529–543, https://doi.org/10.1007/s10980-012-9703-x.
  33. Kerr J. T., Ostrovsky M., From space to species: ecological applications for remote sensing, Trends in Ecology and Evolution, 2003, Vol. 18, No. 6, pp. 299–305, https://doi.org/10.1016/s0169-5347(03)00071-5.
  34. Lutz D. A., Washington-Allen R. A., Shugart H. H., Remote sensing of boreal forest biophysical and inventory parameters: a review, Canadian J. Remote Sensing, 2008, Vol. 34, No. sup2, pp. S286–S313, https://doi.org/10.5589/m08-057.
  35. Main-Knorn M., Pflug B., Louis J. et al., Sen2Cor for sentinel-2, Image and Signal Processing for Remote Sensing XXIII: Proc. SPIE, 2017, Vol. 10427, pp. 37–48, https://doi.org/10.1117/12.2278218.
  36. Nelson M. D., McRoberts R. E., Holden G. R., Bauer M. E., Effects of satellite image spatial aggregation and resolution on estimates of forest land area, Intern. J. Remote Sensing, 2009, Vol. 30, No. 8, pp. 1913–1940, https://doi.org/10.1080/01431160802545631.
  37. Pasquarella V. J., Holden C. E., Woodcock C. E., Improved mapping of forest type using spectral-temporal Landsat features, Remote Sensing of Environment, 2018, Vol. 210, pp. 193–207, https://doi.org/10.1016/j.rse.2018.02.064.
  38. Rouse J. W., Haas R. H., Scheel J. A., Deering D. W., Monitoring Vegetation Systems in the Great Plains with ERTS, Proc. 3 rd Earth Resource Technology Satellite (ERTS) Symp., 1974, Vol. 1, pp. 48–62.
  39. Sibiya B., Lottering R., Odindi J., Discriminating commercial forest species using image texture computed from a WorldView-2 pan-sharpened image and partial least squares discriminant analysis, Remote Sensing Applications: Society and Environment, 2021, No. 23, Article 100605, https://doi.org/10.1016/j.rsase.2021.100605.
  40. Wang M., Zheng Y., Huang C. et al., Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China, Forest Ecosystems, 2022, Vol. 9, Article 100032, https://doi.org/10.1016/j.fecs.2022.100032.
  41. Weszka J. S., Dyer C. R., Rosenfeld A., A comparative study of texture measures for terrain classification, IEEE Trans. Systems, Man, and Cybernetics, 1976, No. 4, pp. 269–285, https://doi.org/10.1109/tsmc.1976.5408777.
  42. Wolter P. T., Mladenoff D. J., Host G. E., Crow T. R., Using multi-temporal Landsat imagery, Photogrammetric Engineering and Remote Sensing, 1995, Vol. 61, pp. 1129–1143.
  43. Wu H., Li M., Zhang M., Zheng J., Shen J., Texture segmentation via scattering transform, Intern. J. Signal Processing, Image Processing and Pattern Recognition, 2013, Vol. 6, No. 2, pp. 165–174.