ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 9-27

Problems of using space-borne SAR data in solving the issue of ice charting automation

E.V. Afanasyeva 1, 2 , J.V. Sokolova 1, 2 , V.V. Tikhonov 2, 3, 1 , D.M. Ermakov 2, 4 
1 Arctic and Antarctic Research Institute, Saint Petersburg, Russia
2 Space Research Institute RAS, Moscow, Russia
3 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
4 Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
Accepted: 23.11.2023
DOI: 10.21046/2070-7401-2024-21-1-9-27
Due to the active development of the Northern Sea Route (NSR), new requirements are being placed on the system of specialized hydrometeorological maintenance for ice shipping in the Arctic. These requirements are expected to be fulfilled, in particular, through the implementation of automated technologies into the system, including algorithms for sea ice classification using various types of remote sensing data. For the needs of operational monitoring, satellite radar imagery is a priority and often the only source of information about the Arctic ice cover. Consequently, a significant part of methods which are currently offered for ice charting automation are based on application of classification algorithms to radar images. Along with advantages, such as independence from weather and sunlight conditions, this type of data has its limitations. Neglect of these limitations can lead to errors in the imagery analysis and, consequently, in planning of maritime operations. In this paper, the factors which complicate automation of sea ice charting using satellite radar imagery are discussed. Reasons for the necessity of expert control when using methods of automated radar imagery analysis are given. From an overview of scientific literature, it is concluded that the optimal option is the combination of expert analysis and automated technics with the dominant role of the expert.
Keywords: sea ice, Northern Sea Route, Arctic shipping, specialized hydrometeorological maintenance, ice charting, space-based radar survey
Full text

References:

  1. Arikainen A. I., Sudokhodstvo vo l’dakh Arktiki (Ice shipping in the Arctic), Moscow: Transport, 1990, 247 p. (in Russian).
  2. Atlas ledyanykh obrazovanii (Atlas of ice formations), Smolyanitsky V. M. (ed.), Saint Petersburg: Arctic and Antarctic Research Inst., 2018, 230 p. (in Russian).
  3. Afanasyeva E. V., Alekseeva T. A., Sokolova Yu. V. et al., AARI methodology for sea ice charts composition, Russian Arctic, 2019, No. 7, pp. 5–20 (in Russian), DOI: 10.24411/2658-4255-2019-10071.
  4. Bohren C. F., Huffman D. R., Absorption and scattering of light by small particles, New York; Chichester; Brisbane; Toronto; Singapore: John Wiley and Sons, 1983, 544 p.
  5. Bushuev A. V., Bychenkov Yu. D., Loshchilov V. S., Masanov A. D., Issledovanie ledyanogo pokrova s pomoshch’yu radiolokatsionnykh stantsii bokovogo obzora (RLS BO) (Exploration of sea ice cover using side-looking radars), Leningrad: Gidrometeoizdat, 1983, 120 p. (in Russian).
  6. Bushuev A. V., Grishchenko V. D., Masanov A. D., Interpretation of sea ice in radar satellite imagery, Issledovanie Zemli iz kosmosa, 1985, No. 3, pp. 9–15 (in Russian).
  7. Verba V. S., Neronskii L. B., Osipov I. G., Turuk V. E., Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya (Space-borne Earth surveillance radar systems), Verba V. S. (ed.), Moscow: Radiotechnika, 2010, 680 p. (in Russian).
  8. Zakharov A. I., Yakovlev O. I., Smirnov V. M., Sputnikovyi monitoring Zemli: Radiolokatsionnoe zondirovanie poverkhnosti (Satellite monitoring of the Earth: Radar remote sensing of surface), Moscow: LENAND, 2022, 248 p. (in Russian).
  9. Johannessen O. M., Alexandrov V. Yu., Frolov I. Ye., Sandven S., Petterson L. H., Bobylev L. P., Kloster K., Smirnov V. G., Mironov Ye. U., Babich N. G., Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications, Chichester: Springer – Praxis Publ., 2007, 472 p.
  10. Kotlyakov V. M., Izbrannye sochineniya. Kniga 1. Glyatsiologiya Antarktidy (Selected works. Vol. 1: Glaciology of Antarctica), Moscow: Nauka, 2000, 432 p. (in Russian).
  11. Kuzmin P. P., Fizicheskie svoistva snezhnogo pokrova (Physical properties of snow cover), Leningrad: Gidrometeoizdat, 1957, 180 p. (in Russian).
  12. Morskoi led (Sea ice), I. E. Frolov, V. P. Gavrilo (eds.), Saint Petersburg: Gidrometeoizdat, 1997, 402 p. (in Russian).
  13. Decree of the Government of the Russian Federation No. 2115-r of August 1, 2022, Moscow, 2022, 57 p. (in Russian).
  14. Rukovodstvo pol’zovatelya dannymi distantsionnogo zondirovaniya Zemli, poluchaemymi kosmicheskoi sistemoi “Kondor-FKA” (User’s guide for Earth remote sensing data obtained by the Kondor-FKA space system), Moscow: SC “Roscosmos”, JSC “MIC “NPO Mashinostroeniya”, 2023, 112 p. (in Russian).
  15. Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining sea ice cover characteristics), Smirnov V. G. (ed.), Saint Petersburg: Arctic and Antarctic Research Inst., 2011, 240 p. (in Russian).
  16. Bingham A. W., Drinkwater M. R., Recent changes in the microwave scattering properties of the Antarctic ice sheet, IEEE Trans. Geoscience and Remote Sensing, 2000, Vol. 38, No. 4, pp. 1810–1820, DOI: 10.1109/36.851765.
  17. Cheng A., Casati B., Tivy A. et al., Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2, The Cryosphere, 2020, No. 14, pp. 1289–1310, DOI: 10.5194/tc-14-1289-2020.
  18. Dierking W., Busche T., Sea ice monitoring by L-band SAR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, No. 2, pp. 957–970, DOI: 10.1109/TGRS.2005.861745.
  19. Hallikainen M., Winebrenner D. P., The physical basis for sea ice remote sensing, In: Microwave Remote Sensing of Sea Ice, F. D. Carsey (ed.), Book Ser.: Geophysical monograph 68, Washington, DC: American Geophysical Union, 1992, pp. 29–46, DOI: 10.1029/GM068p0029.
  20. Hanesiak J. M., Yackel J. J., Barber D. G., Effect of Melt Ponds on First-Year Sea Ice Ablation — Integration of RADARSAT-1 and Thermodynamic Modelling, Canadian J. Remote Sensing, 2001, Vol. 27, No. 5, pp. 433–442, DOI: 10.1080/07038992.2001.10854885.
  21. Kwok R., Identification of sea ice types in spaceborne synthetic aperture radar data, J. Geophysical Research, 1992, Vol. 97, No. C2, pp. 2391–2402, DOI: 10.1029/91JC02652.
  22. Nghiem S. V., Kwok R., Yueh S. H., Drinkwater M. R., Polarimetric signatures of sea ice: 2. Experimental observations, J. Geophysical Research, 1995, Vol. 100, No. C7, pp. 13681–13698, DOI: 10.1029/95JC00938.
  23. Onstott R. G., SAR and scatterometer signatures of sea ice, In: Microwave Remote Sensing of Sea Ice, Carsey F. D. (ed.), Book Ser.: Geophysical monograph 68, Washington, DC: American Geophysical Union, 1992, pp. 73–104, DOI: 10.1029/GM068p0073.
  24. Sandven S., Johannessen O. M., Miles M. W. et al., Barents Sea seasonal ice zone features and processes from ERS-1 synthetic aperture radar: Seasonal Ice Zone Experiment 1992, J. Geophysical Research, 1999, Vol. 104, No. C7, pp. 15843–15857, DOI: 10.1029/1998JC900050.
  25. Scheuchl B., Cumming I., Hajnsek I., Classification of fully polarimetric single- and dual-frequency SAR data of sea ice using the Wishart statistics, Canadian J. Remote Sensing, 2005, Vol. 31, No. 1, pp. 61–72, DOI: 10.5589/m04-060.
  26. Sea ice nomenclature. WMO sea-ice document No. 259. V. 1: Terminology and codes, Geneva: WMO, 2017.
  27. Sea-ice information services in the world. WMO sea-ice document No. 574, Geneva: WMO, 2019.
  28. Shokr M. E., Evaluation of second-order texture parameters for sea ice classification from radar images, J. Geophysical Research, 1991, Vol. 96, No. C6, pp. 10625–10640, DOI: 10.1029/91JC00693.
  29. Shokr M., Sinha N. K., Sea ice: physics and remote sensing, Geophysical monograph 209, New Jersey: Wiley, 2015, 624 p.
  30. The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, A. Flores, K. Herndon, R. Thapa, E. Cherrington (eds.), NASA, 2019, 307 p., DOI: 10.25966/nr2c-s697.
  31. Tikhonov V. V., Boyarskii D. A., Sharkov E. A. et al., Microwave Model of Radiation from the Multilayer “Ocean–atmosphere” System for Remote Sensing Studies of the Polar Regions, Progress in Electromagnetics Research B, 2014, Vol. 59, pp. 123–133, DOI: 10.2528/PIERB14021706.
  32. Tikhonov V., Khvostov I., Romanov A., Sharkov E., Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data, The Cryosphere, 2018, Vol. 12, No. 8, pp. 2727–2740, https://doi.org/10.5194/tc-12-2727-2018.
  33. Ulaby F. T., Long D. G., Microwave Radar and Radiometric Remote Sensing, Univ. Michigan Press, 2014, 984 p.
  34. Zakhvatkina N., Smirnov V., Bychkova I., Satellite SAR data-based sea ice classification: An overview, Geosciences, 2019, Vol. 9, Article 152, https://doi.org/10.3390/geosciences9040152.