ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 51-65

Study of the applicability of C-band geophysical model functions for SAR data in conditions of the Gorky Reservoir

N.S. Rusakov 1 , D.A. Sergeev 1 , O.S. Ermakova 1 , A.M. Kuznetsova 1 , D.S. Gladskikh 1 , E.I. Poplavsky 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 23.11.2023
DOI: 10.21046/2070-7401-2024-21-1-51-65
The study is concerned with the investigation of the applicability of the C-band geophysical model functions (GMF) CMOD5, CMOD5.N, CMOD7 in the conditions of an inland reservoir (using the example of the Gorky Reservoir). The proposed GMFs were used to calculate wind speed from SAR image data from the Sentinel-1 satellite for the IW mode and co-polarization. The wind speed direction values required for calculations within the framework of the selected GMF were obtained from weather station measurements installed in the southern part of the Gorky Reservoir. At the same time, the weather station data were combined with selected SAR images in time and space. It was found that the best result is provided by the CMOD5.N model. Additionally, wind speed calculations were carried out within the framework of a geophysical model function for inland water bodies developed on the basis of the SSA2 small slope approximation and combined model spectra. It was found that this GMF reproduces wind speed with less accuracy compared to CMOD models. It was also demonstrated that for the conditions of the Gorky Reservoir, the results of CMOD calculations are in satisfactory agreement with the predictions of spatial distribution of wind speed field calculated using the Weather Research and Forecasting (WRF) model.
Keywords: Sentinel-1 satellite, inland waters, SAR image, C-band, geophysical model function, oceanographic buoy
Full text

References:

  1. Girin S. N., Analysis of the validity of restrictions on the operation of passenger vessels in the Gorky reservoir, Russian J. Water Transport, 2022, Vol. 72, pp. 167–179 (in Russian), DOI: 10.37890/jwt.vi72.256.
  2. Monin A. S., Obukhov A. M., Basic laws of turbulent mixing in the surface layer of the atmosphere, Trudy Geophizicheskogo instituta Akademii nauk SSSR, 1954, Vol. 24, pp. 164–187 (in Russian).
  3. Donnelly W. J., Carswell J. R., McIntosh R. E. et al., Revised Ocean Backscatter Models at C- and Ku band under High-wind Conditions, J. Geophysical Research, 1999, Vol. 104(C5), pp. 11485–11497, DOI: 10.1029/1998JC900030.
  4. Dudhia J., Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model, J. Atmospheric Sciences, 1989, Vol. 46, pp. 3077–3107, DOI: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
  5. Dudhia J., A multi-layer soil temperature model for MM5, The 6 th PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, 1996, pp. 49–50.
  6. Elfouhaily T., Chapron B., Katsaros K., Vandemark D., A Unified Directional Spectrum for Long and Short Wind-Driven Waves, J. Geophysical Research, 1997, Vol. 102, pp. 15781–15796, DOI: 10.1029/97jc00467.
  7. Hersbach H., CMOD5.n: A C-band geophysical model function for equivalent neutral wind, Technical memorandum 554, 2008, 20 p., http://www.ecmwf.int/sites/default/files/elibrary/2008/9873-cmod5n-c-band-geophysical-model- function-equivalent-neutral-wind.pdf.
  8. Hersbach H., Stoffelen A., de Haan S., An improved C-band scatterometer ocean geophysical model function: CMOD5, J. Geophysical Research, 2007, Vol. 112(C3), Article C03006, DOI: 10.1029/2006JC003743.
  9. Hong S. Y., Noh Y., Dudhia J., A new vertical diffusion package with an explicit treatment of entrainment processes, Monthly Weather Review, 2006, Vol. 134, pp. 2318–2341, DOI: 10.1175/MWR3199.1.
  10. Horstmann J., Koch W., Measurement of ocean surface winds using synthetic aperture radars, IEEE J. Oceanic Engineering, 2005, Vol. 30, Issue 3, pp. 508–515, DOI: 10.1109/JOE.2005.857514.
  11. Horstmann J., Koch W., Lehner S., Tonboe R., Ocean winds from Radarsat-1 ScanSAR, Canadian J. Remote Sensing, 2002, Vol. 28, pp. 524–533, DOI: 10.5589/m02-043.
  12. Horstmann J., Schiller H., Schulz-Stellenfleth J., Lehner S., Global wind speed retrieval from SAR, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, Issue 10, pp. 2277–2286, DOI: 10.1109/TGRS.2003.814658.
  13. Hwang P. A., Wavenumber spectrum and mean square slope of intermediate-scale ocean surface waves, J. Geophysical Research, 2005, Vol. 110, Article C10029, DOI: 10.1029/2005JC003002.
  14. Jimenez P. A., Dudhia J., Gonzalez–Rouco J. F. et al., A revised scheme for the WRF surface layer formulation, Monthly Weather Review, 2012, Vol. 140, pp. 898–918, DOI: 10.1175/MWR-D-11-00056.1.
  15. Katona T., Bartsch A., Estimation of wind speed over lakes in Central Europe using spaceborne C-band SAR, European J. Remote Sensing, 2018, Vol. 51, Issue 1, pp. 921–931, DOI: 10.1080/22797254.2018.1516516.
  16. Kessler E., On the distribution and continuity of water substance in atmospheric circulations, In: Meteorological Monographs, Boston: American Meteorological Society, 1969, Vol. 10, pp. 1–84, DOI: 10.1007/978-1-935704-36-2_1.
  17. Kuznetsova A., Baydakov G., Papko V. et al., Adjusting of Wind Input Source Term in WAVEWATCH III Model for the Middle-Sized Water Body on the Basis of the Field Experiment, Advances in Meteorology, 2016, pp. 1–13, DOI: 10.1155/2016/8539127.
  18. Kuznetsova A., Baydakov G., Sergeev D., Troitskaya Y., High-resolution waves and weather forecasts using adapted WAVEWATCH III and WRF models, J. Physics: Conf. Ser., 2019, Vol. 1163, Issue 1, Article 012031, DOI: 10.1088/1742-6596/1163/1/012031.
  19. Lehner S., Horstmann J., Koch W., Rosenthal W., Mesoscale wind measurements using recalibrated ERS SAR images, J. Geophysical Research, 1998, Vol. 103(C4), pp. 7847–7856, DOI: 10.1029/97JC02726.
  20. Lehner S., Schulz-Stellenfleth J., Schattler B. et al., Wind and wave measurements using complex ERS SAR wave mode data, IEEE Trans. Geoscience and Remote Sensing, 2000, Vol. 38, Issue 5, pp. 2246–2257, DOI: 10.1109/36.868882.
  21. Lin H., Xu Q., Zheng Q., An Overview on SAR Measurements of Sea Surface Wind, Progress in Natural Science, 2008, Vol. 18, pp. 913–919, DOI: 10.1016/j.pnsc.2008.03.008.
  22. Lu Y., Zhang B., Perrie W. et al., A C-Band Geophysical Model Function for Determining Coastal Wind Speed Using Synthetic Aperture Radar, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2018, Vol. 11, Issue 7, pp. 2417–2428, DOI: 10.1109/JSTARS.2018.2836661.
  23. Mallard M., Nolte C., Spero T. et al., Technical challenges and solutions in representing lakes when using WRF in downscaling applications, Geoscientific Model Development, 2015, Vol. 8, pp. 1085–1096, DOI: 10.5194/gmd-8-1085-2015.
  24. McDaniel S. T., Small-Slope Predictions of Microwave Backscatter from the Sea Surface, Waves in Random Media, 2001, Vol. 11, Issue 3, pp. 343–360, DOI: 10.1080/13616670109409789.
  25. Mlawer E. J., Taubman S. J., Brown P. D. et al., Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave, J. Geophysical Research, 1997, Vol. 102, pp. 16663–16682, DOI: 10.1029/97JD00237.
  26. Monaldo F., Jackson C., Li X., Pichel W. G., Preliminary evaluation of Sentinel-1A wind speed retrievals, IEEE J Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, Issue 6, pp. 2638–2642, DOI: 10.1109/JSTARS.2015.2504324.
  27. Mouche A., Chapron B., Global C-Band Envisat, Radarsat-2 and Sentinel-1 SAR Measurements in Copolarization and Cross-polarization, J. Geophysical Research, 2015, Vol. 120, pp. 7195–7207, DOI: 10.1002/2015JC011149.
  28. Quilfen Y., Chapron B., Elfouhaily T. et al., Observation of tropical cyclones by high-resolution scatterometry, J. Geophysical Research, 1998, Vol. 103(C4), pp. 7767–7786, DOI: 10.1029/97JC01911.
  29. Radkani N., Zakeri B. G., Southern Caspian Sea wind speed retrieval from C-band Sentinel-1A SAR images, Intern. J. Remote Sensing, 2020, Vol. 41, Issue 9, pp. 3511–3534, DOI: 10.1080/01431161.2019.1706201.
  30. Saha S., Moorthi Sh., Pan H.-L. et al., The NCEP Climate Forecast System Reanalysis, Bull. American Meteorological Society, 2010, Vol. 91, pp. 1015–1057, DOI: 10.1175/2010BAMS3001.1.
  31. Skamarock W. C., Klemp J. B., Dudhia J. et al., A Description of the Advanced Research WRF Version 3, NCAR Tech. Note NCAR/TN-475+STR, 2008, 113 p., DOI: 10.5065/D68S4MVH.
  32. Stoffelen A., Toward the true near-surface wind speed: Error modeling and calibration using triple collocation, J. Geophysical Research, 1998, Vol. 103(C4), pp. 7755–7766, DOI: 10.1029/97JC03180.
  33. Stoffelen A., Anderson D., Scatterometer data interpretation: Estimation and validation of the transfer function CMOD-4, J. Geophysical Research, 1997, Vol. 102, pp. 5767–5780, DOI: 10.1029/96JC02860.
  34. Stoffelen A., Verspeek J. A., Vogelzang J., Verhoef A., The CMOD7 Geophysical Model Function for ASCAT and ERS Wind Retrievals, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10(5), pp. 2123–2134, DOI: 10.1109/JSTARS.2017.2681806.
  35. Takeyama Y., Ohsawa T., Kozai K. et al., Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters, Remote Sensing, 2013, Vol. 5, pp. 1956–1973, DOI: 10.3390/rs5041956.
  36. Vachon P. W., Dobson F. W., Validation of wind vector retrieval from ERS 1 SAR images over the ocean, Global Atmosphere and Ocean System, 1996, Vol. 5, pp. 177–187, DOI: 10.1109/IGARSS.2004.1370377.
  37. Vachon P. W., Dobson F. W., Wind retrieval from Radarsat SAR images: Selection of a suitable C-band HH polarization wind retrieval model, Canadian J. Remote Sensing, 2000, Vol. 26, pp. 306–313, DOI: 10.1080/07038992.2000.10874781.
  38. Verhoef A., Portabella M., Stoffelen A., High-resolution ASCAT scatterometer winds near the coast, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, Issue 7, pp. 2481–2487, DOI: 10.1109/TGRS.2011.2175001.
  39. Voronovich A. G., Zavorotny V. U., Theoretical Model for Scattering of Radar Signals in Ku- and C-bands from a Rough Sea Surface with Breaking Waves, Waves in Random Media, 2001, Vol. 11, Issue 3, pp. 247–269, DOI: 10.1080/13616670109409784.
  40. Wackerman C., Rufenach C. L., Shuchman R. A. et al., Wind vector retrieval using ERS 1 synthetic aperture radar imagery, IEEE Trans. Geoscience and Remote Sensing, 1996, Vol. 34, pp. 1343–1352, DOI: 10.1109/36.544558.
  41. Wang H., Yang J., Mouche A. et al., GF-3 SAR ocean wind retrieval: The first view and preliminary assessment, Remote Sensing, 2017, Vol. 9, Issue 694, DOI: 10.3390/rs9070694.
  42. Wei S., Yang S., Xu D., On accuracy of SAR wind speed retrieval in coastal area, Applied Ocean Research, 2020, Vol. 95, Article 102012, DOI: 10.1016/j.apor.2019.102012.
  43. Yang X., Li X., Pichel W. G., Li Z., Comparison of ocean-surface winds retrieved from QuikSCAT scatterometer and Radarsat-1 SAR in offshore waters of the US west coast, IEEE Geoscience and Remote Sensing Letters, 2011, Vol. 8, Issue 1, pp. 163–167, DOI: 10.1109/LGRS.2010.2053345.
  44. Zhang B., Perrie W., He Y., Wind speed retrieval from Radarsat2 quad-polarization images using a new polarization ratio model, J. Geophysical Research, 2011, Vol. 116(C8), Article C08008, DOI: 10.1029/2010JC006522.