ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 35-48

Neural network approaches to precipitation nowcasting: A review and test of existing methods

M.O. Kuchma 1, 2 , S.I. Malkovsky 1 , A.I. Andreev 1, 2 , V.D. Bloshchinsky 1, 2 
1 Computing Center FEB RAS, Khabarovsk, Russia
2 Far Eastern Center of SRC "Planeta", Khabarovsk, Russia
Accepted: 18.10.2023
DOI: 10.21046/2070-7401-2023-20-6-35-48
In recent years, there has been a growing interest among researchers and meteorological agencies in different countries in the field of accurate current weather forecasting using ground-based and satellite observation systems. In this regard, this paper provides an overview of recent advances in the field of current weather forecasting. In particular, modern neural network nowcasting methods are considered to solve the problem of extrapolating a sequence of digital matrices containing information about precipitation rate from previous observation dates. In this case, special attention is paid to the possibility of forecasting precipitation where data from geostationary spacecraft is used as the main source of information, which is due to the large territorial coverage, especially for remote areas. Using the publicly available SEVIR dataset, which combines ground-based and satellite observations of precipitation and hazardous weather events, the authors tested selected neural network architectures to solve the nowcasting problem. Conclusions are drawn about the possibility of using this neural network models for current weather forecasting in the Far Eastern region of Russia.
Keywords: nowcasting, current weather forecast, precipitation, artificial intelligence, machine learning, neural networks, hydrometeorology
Full text

References:

  1. Kuznetsova V. P., Dangerous hydrometeorological phenomena in the northern regions in the context of observed climate change, Geomorfologiya i fizicheskaya geografiya Sibiri v XXI veke (Geomorphology and physical geography of Siberia in the 21st century), 2020, pp. 104–108 (in Russian).
  2. Ansari S., Greco S. D., Kearns E. et al., Unlocking the potential of NEXRAD data through NOAA’s Big Data Partnership, Bull. American Meteorological Society, 2018, Vol. 99, No. 1, pp. 189–204, DOI: 10.1175/BAMS-D-16-0021.1.
  3. Cho K., Merrienboer B., Gulcehre C. et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv preprint, arXiv: 1406.1078, 2014, 15 p., DOI: 10.48550/arXiv.1406.1078.
  4. Forecast verification: a practitioner’s guide in atmospheric science, I. T. Jolliffe, D. B. Stephenson (eds.), Chichester: John Wiley and Sons, 2012, 296 p.
  5. Franch G., Maggio V., Coviello L. et al., TAASRAD19, a high-resolution weather radar reflectivity dataset for precipitation nowcasting, Scientific Data, 2020, Vol. 7, No. 1, Article 234, DOI: 10.1038/s41597-020-0574-8.
  6. Gao Z., Shi X., Wang H. et al., Deep learning and the weather forecasting problem: Precipitation nowcasting, Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences, 2021, pp. 218–239, DOI: 10.1002/9781119646181.ch15.
  7. Hochreiter S., Schmidhuber J., Long short-term memory, Neural Computation, 1997, Vol. 9, No. 8, pp. 1735–1780, DOI: 10.1162/neco.1997.9.8.1735.
  8. Huynh-Thu Q., Ghanbari M., Scope of validity of PSNR in image/video quality assessment, Electronics Letters, 2008, Vol. 44, No. 13, pp. 800–801, DOI: 10.1049/el:20080522.
  9. Lecun Y., Bengio Y., Convolutional networks for images, speech, and time series, The Handbook of Brain Theory and Neural Networks, 1995, Vol. 3361, No. 10, 14 p.
  10. Liu Y., Xi D.-G., Li Z.-L. et al., A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach, J. Hydrology, 2015, Vol. 529, pp. 354–364, DOI: 10.1016/j.jhydrol.2015.07.042.
  11. Locatello F., Weissenborn D., Unterthiner T., Mahendran A., Heigold G., Uszkorei J., Dosovitskiy A., Kipf T., Object-centric learning with slot attention, Advances in Neural Information Processing Systems, 2020, Vol. 33, pp. 11525–11538.
  12. Luong M. T., Pham H., Manning C. D., Effective approaches to attention-based neural machine translation, arXiv preprint, arXiv: 1508.04025, 2015, 11 p., DOI: 10.48550/arXiv.1508.04025.
  13. Ma Z., Zhang H., Liu J., MS-RNN: A flexible multi-scale framework for spatiotemporal predictive learning, arXiv preprint, arXiv: 2206.03010, 2022, 16 p., DOI: 10.48550/arXiv.2206.03010.
  14. Ma Z., Wang G., Yao J. et al., An Improved U-Net Model Based on Multi-Scale Input and Attention Mechanism: Application for Recognition of Chinese Cabbage and Weed, Sustainability, 2023, Vol. 15, No. 7, Article 5764, DOI: 10.3390/su15075764.
  15. Moskolaï W. R., Abdou W., Dipanda A. et al., Application of deep learning architectures for satellite image time series prediction: A review, Remote Sensing, 2021, Vol. 13, No. 23, Article 4822, DOI: 10.3390/rs13234822.
  16. Pulkkinen S., Nerini D., Perez Hortal A. A. et al., Pysteps: An open-source Python library for probabilistic precipitation nowcasting (v1. 0), Geoscientific Model Development, 2019, Vol. 12, No. 10, pp. 4185–4219, DOI: 10.5194/gmd-12-4185-2019.
  17. Ramsauer T., Weiß T., Marzahn P., Comparison of the GPM IMERG final precipitation product to RADOLAN weather radar data over the topographically and climatically diverse Germany, Remote Sensing, 2018, Vol. 10, No. 12, Article 2029, DOI: 10.3390/rs10122029.
  18. Recurrent neural networks: design and applications, L. Medsker, L. C. Jain (eds.), Boca Raton: CRC press, 1999, 416 p., https://doi.org/10.1201/9781003040620.
  19. Schaefer J. T., The critical success index as an indicator of warning skill, Weather and Forecasting, 1990, Vol. 5, No. 4, pp. 570–575, DOI: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.
  20. Shi X., Chen Z., Wang H., Yeung D. Y., Wong W. K., Woo W. C., Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Advances in Neural Information Processing Systems, 2015, Vol. 28, 9 p.
  21. Shi X., Gao Z., Lausen L., Wang H., Yeung D. Y., Wong W. K., Woo W. C., Deep learning for precipitation nowcasting: A benchmark and a new model, Advances in Neural Information Processing Systems, 2017, Vol. 30, 9 p.
  22. Veillette M., Samsi S., Mattioli C., Sevir: A storm event imagery dataset for deep learning applications in radar and satellite meteorology, Advances in Neural Information Processing Systems, 2020, Vol. 33, pp. 22009–22019.
  23. Wang Y., Long M., Wang J., Gao Z., Yu P. S., Predrnn: Recurrent neural networks for predictive learning using spatiotemporal LSTMs, Advances in Neural Information Processing Systems, 2017, Vol. 30, 9 p.
  24. Wang Y., Gao Z., Long M., Wang J., Yu P. S., Predrnn++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning, Intern. Conf. Machine Learning, 2018, pp. 5123–5132.
  25. Wang Y., Zhang J., Zhu H. et al., Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics, Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2019, pp. 9154–9162, DOI: 10.1109/CVPR.2019.00937.
  26. Wang Y., Wu H., Zhang J. et al., Predrnn: A recurrent neural network for spatiotemporal predictive learning, IEEE Trans. Pattern Analysis and Machine Intelligence, 2022, Vol. 45, No. 2, pp. 2208–2225, DOI: 10.1109/TPAMI.2022.3165153.
  27. Wang Z., Bovik A. C., Sheikh H. R. et al., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Processing, 2004, Vol. 13, No. 4, pp. 600–612, DOI: 10.1109/TIP.2003.819861.
  28. Yao Z., Wang Y., Wu H. et al., ModeRNN: Harnessing spatiotemporal mode collapse in unsupervised predictive learning, IEEE Trans. Pattern Analysis and Machine Intelligence, 2023, pp. 1–16, DOI: 10.1109/TPAMI.2023.3293145.